-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_generation_arithmetic.py
1148 lines (958 loc) · 40.6 KB
/
data_generation_arithmetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding: utf-8
"""
Generate a dataset for the artihmetic dataset.
Usage: data_generation_arithmetic.py main [kwargs]
Args:
--max_depth (default 6):
How deep the equations can go. This guarantees that at
least one path from root to leaf will be that long.
--max_total_length (default 349):
The maximum length of the *label* in number of tokens.
If a generated entry is shorter, it will be ignored and a
new one will be generated.
--max_answer_length (default 6):
The maximum length of a value in number of tokens.
This can be the final value or the intermediate value.
--max_qty_per_level (default 200000):
Number of data points to generate per equation depth level.
The dataset can be loaded with `load_dataset`.
If you just want to experiment with this dataset, you should probably
pre-tokenize the entries and save them to HDF5, calling
`Node.get_input_str` to get the equations, and `Node.get_value` on
the top level strings to get non recursive values.
"""
import collections
import copy
import dataclasses
import logging
import math
from pathlib import Path
import pickle
import time
from typing import *
from beartype import beartype
import fire # type: ignore[import]
import numpy as np
import torch
try:
import pretty_traceback # type: ignore
pretty_traceback.install()
except ImportError:
pass
import random
import rich
from tqdm import tqdm # type: ignore
import json
import general_utils
import data_tokenizer
LOGGER = logging.getLogger(__name__)
DEBUG = True
SCRIPT_DIR = Path(__file__).absolute().parent
OPMAP: Final[dict[str, Callable[[Union[str, int], Union[str, int]], str]]] = {
"+": lambda x, y: str(int(x) + int(y)),
"*": lambda x, y: str(int(x) * int(y)),
"-": lambda x, y: str(int(x) - int(y)),
}
###############################################################################
# Parse max tree depths from strings or ids
###############################################################################
def tree_depth_from_str(tree_string: str) -> int:
"""
Computes the depth of an equation tree of the dataset.
Does a cumulative sum where `(` are ones and `)` are -1,
and returns the max of the resulting array.
The `from_ids` version is *considerably* faster,
being vectorized.
"""
assert isinstance(tree_string, str)
bool_test = np.fromiter(
(char == "(" for char in tree_string if char in ["(", ")"]), np.int64
)
cum_sum = np.cumsum(2 * bool_test - 1)
assert cum_sum[-1] == 0
val = np.max(cum_sum)
return val
def tree_depth_from_ids(
ids: Union[np.ndarray, list, "torch.Tensor"],
tokenizer: data_tokenizer.ArithmeticTokenizer,
):
if isinstance(ids, torch.Tensor):
ids = ids.cpu().detach().numpy()
if not isinstance(ids, np.ndarray):
ids = tokenizer.pad_array(ids)
ids = cast(np.ndarray, ids)
assert ids.dtype == np.int64, ids.dtype
lparen_idx = tokenizer.token_to_idx["("]
rparen_idx = tokenizer.token_to_idx[")"]
up_downs = ids.copy()
up_downs[ids == lparen_idx] = 1
up_downs[ids == rparen_idx] = -1
up_downs[np.logical_and(ids != lparen_idx, ids != rparen_idx)] = 0
counts = up_downs.cumsum(axis=-1)
return counts.max(axis=-1)
###############################################################################
# Utilities to load the dataset and prep the entries for training or inference.
# prep_input_data used to have more stuff I believe.
###############################################################################
@beartype
def prep_input_data(
tokenizer: data_tokenizer.Tokenizer,
input_str: str,
pseudo_without_head: str,
) -> tuple[np.ndarray, np.ndarray]:
input_ids = tokenizer(input_str, return_tensors="np", no_eos=False)
decoder_input_ids = tokenizer(pseudo_without_head, return_tensors="np", no_eos=False)
# The following is to silence type checkers. Only done once, it's ok.
assert isinstance(input_ids, np.ndarray), type(input_ids)
assert isinstance(decoder_input_ids, np.ndarray), type(decoder_input_ids)
return input_ids, decoder_input_ids
def load_dataset(
json_path: Union[str, Path], pkl_path: Union[str, Path], splits=None,
) -> tuple[DefaultDict[str, DefaultDict[int, list["Node"]]], "EquationConfig"]:
LOGGER.debug(f"Reading and parsing dataset from {json_path} or from {pkl_path}")
ACCEPTABLE_SPLITS = {"train", "eval"}
if splits is None:
splits = ACCEPTABLE_SPLITS
###########################################################################
# Either load the dataset from a json file or from a pickle file.
# -------------------------------------------------------------------------
# The data should be identical, the data in the pickle file is a dict of
# basic types (the same as in the json file). We use pickle because
# it was faster in practice.
###########################################################################
dicts: dict[str, Any]
if pkl_path:
rich.print(f'[bold]Loading PKL data file:[/] "{pkl_path}"\n')
with open(pkl_path, "rb") as f:
dicts = pickle.load(f)
else:
rich.print(f'[bold]Loading JSON data file:[/] "{json_path}"\n')
assert json_path
with open(json_path, "r") as f:
dicts = json.loads(f.read())
# Convert the keys to ints
for split in dicts:
for level in dicts[split]:
dicts[split][int(level)] = dicts[split][level]
del dicts[split][level]
rich.print("Done loading file.")
###########################################################################
# Parse the dataset.
###########################################################################
rich.print(f"Parsing structures from the dicts.")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Do a sanity check about the structure of the data
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
data : dict[str, dict[int, list[dict[str, Any]]]]= dicts["data"]
assert isinstance(data, dict)
assert set(data.keys()) == ACCEPTABLE_SPLITS, (data.keys(), ACCEPTABLE_SPLITS)
for split in data.values(): # type: ignore[assignment]
print(split.keys()) # type: ignore[attr-defined] # The levels.
# spit is a dict of levels to list of nodes.
assert isinstance(split, dict)
# split[1] is a list of nodes
assert isinstance(split[1], list)
# split[1][0] is a Node
assert isinstance(split[1][0], dict)
assert "op" in split[1][0]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Build the nodes of the dataset.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print("Building nodes")
output: DefaultDict[str, DefaultDict[int, list[Node]]] = collections.defaultdict(
lambda: collections.defaultdict(list)
)
for split in splits:
split_data = data[split]
for level_idx, level_list in tqdm(
split_data.items(), desc=f"Building nodes for {split}"
):
for node_dict in tqdm(level_list, desc=f"building level {level_idx} nodes"):
output[split][level_idx].append(Node.from_json_dict(node_dict))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Build the config object.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
config = dicts["config"]
config_obj = EquationConfig.from_json_dict(config)
LOGGER.debug(f"Done loading dataset.")
return output, config_obj
###############################################################################
# Node class
###############################################################################
class Node:
__slots__ = (
"_children",
"_complexity_level",
"_input_str",
"_pseudo_value",
"_op",
"_oracle_str",
"_oracle_without_top_val",
"_value",
"_root_complexity_level",
)
def __copy__(self):
raise RuntimeError("Nodes are not shallow-copyable.")
def __deepcopy__(self, memo):
assert self._root_complexity_level is None, (
"self._root_complexity_level is not None, this is suspiscious behavior. "
"It is not currently conserved by the deep copy. It could be though. "
)
assert (
self._pseudo_value is None
), "self._pseudo_value is not None, this is suspiscious."
return Node(
op=self._op,
children=[copy.deepcopy(c, memo) for c in self._children]
if self._children
else None,
value=self._value,
complexity_level=self._complexity_level,
)
def __init__(
self,
op: Optional[str],
children: Optional[List["Node"]],
value: str,
complexity_level: int,
):
self._op: Optional[str] = op
self._children: List["Node"] = [] if children is None else children
self._value = str(value)
self._input_str: Optional[str] = None
self._oracle_str: Optional[str] = None
self._oracle_without_top_val: Optional[str] = None
self._pseudo_value: Optional[int] = None
self._complexity_level: Optional[int] = complexity_level
self._root_complexity_level: Optional[int] = None
def get_complexity_level(self) -> int:
assert self._complexity_level is not None, "Complexity level is not set."
assert isinstance(self._complexity_level, int), type(self._complexity_level)
return self._complexity_level
def get_root_complexity_level(self) -> int:
assert isinstance(self._root_complexity_level, int), type(self._root_complexity_level)
return self._root_complexity_level
def set_complexity_level(self, value: int) -> None:
assert self._complexity_level is None
self._complexity_level = value
def set_root_complexity_level(self, value: int) -> None:
assert self._root_complexity_level is None
self._root_complexity_level = value
def reset_pseudo_values(self) -> None:
self._pseudo_value = None
if self.get_children():
for child in self.get_children():
child.reset_pseudo_values()
def to_json_dict(self) -> Dict[str, Any]:
oracle_str, oracle_without_top_val = self.get_oracle_str()
assert self.get_root_complexity_level() is not None
return {
"op": self.get_op(),
"children": [child.to_json_dict() for child in self.get_children()]
if self.get_children()
else None,
"value": self.get_value(),
"input_str": self.get_input_str(),
"oracle_str": oracle_str,
"oracle_without_top_val": oracle_without_top_val,
"complexity_level": self.get_complexity_level(),
"root_complexity_level": self.get_root_complexity_level(),
}
def get_ident(self) -> str:
""" Return a unique identifyer.
`input_str`s are unique identifiers and always should be.
The only preoccupation is the efficiency of the equality funciton. We'll
see about that but it shouldn't be too bad.
`Node` objects cache their get_input_str, it's not lazily computed, so
that part is pretty fast.
"""
return self.get_input_str()
@classmethod
def from_json_dict(cls, json_dict) -> "Node":
node = cls(
op=json_dict["op"],
children=(
[
Node.from_json_dict(child_json)
for child_json in json_dict["children"]
]
if json_dict["children"]
else None
),
value=json_dict["value"],
complexity_level=json_dict["complexity_level"],
)
node._root_complexity_level = json_dict["root_complexity_level"]
node._input_str = json_dict["input_str"]
node._oracle_str = json_dict["oracle_str"]
node._oracle_without_top_val = json_dict["oracle_without_top_val"]
return node
def get_op(self) -> str:
assert isinstance(self._op, str)
return self._op
def get_children(self) -> list["Node"]:
return self._children
def get_value(self) -> str:
assert isinstance(self._value, str), type(self._value)
return self._value
def get_input_str(self) -> str:
# Multiple calls should always return the same thing
if self._input_str is None:
if self.get_children():
a = self.get_children()[0].get_input_str()
b = self.get_children()[1].get_input_str()
assert len(self.get_children()) == 2, len(self.get_children())
self._input_str = f"({a} {self.get_op()} {b})"
else:
self._input_str = f"{self.get_value()}"
return self._input_str
def get_oracle_str(self) -> tuple[str, str]:
"""
The situation is that if we do generation with the scratch pad fed in,
we need to be given the left part of the final top most equation without
the right value.
"""
if self._oracle_str is None or self._oracle_without_top_val is None:
if self.get_children():
assert len(self.get_children()) == 2, len(self.get_children())
a_str, _ = self.get_children()[0].get_oracle_str()
b_str, _ = self.get_children()[1].get_oracle_str()
self._oracle_str = f"({a_str} {self._op} {b_str} = {self.get_value()})"
self._oracle_without_top_val = f"({a_str} {self._op} {b_str} = "
else:
self._oracle_str = f"{self.get_value()}"
self._oracle_without_top_val = ""
return self._oracle_str, self._oracle_without_top_val
def get_pseudo_topsort_query(self) -> str:
"""
The situation is that if we do generation with the scratch pad fed in,
we need to be given the left part of the final top most equation without
the right value.
"""
if self.get_children():
assert len(self.get_children()) == 2, len(self.get_children())
assert self.get_children()[0].get_pseudo_value() is not None
assert self.get_children()[1].get_pseudo_value() is not None
a_str = self.get_children()[0].get_pseudo_topsort()
assert a_str
b_str = self.get_children()[1].get_pseudo_topsort()
assert b_str
_pseudo_without_top_val = f"( {a_str} {self._op} {b_str} = "
else:
# If we don't have children, then we use the real value
_pseudo_without_top_val = str(self.get_value())
return _pseudo_without_top_val
def get_pseudo_topsort(self):
"""
The situation is that if we do generation with the scratch pad fed in,
we need to be given the left part of the final top most equation without
the right value.
"""
query = self.get_pseudo_topsort_query()
if self.get_children():
return f"{query}{self.get_pseudo_value()} )"
else:
return self.get_value()
def set_pseudo_value(self, value) -> None:
assert self.get_children()
self._pseudo_value = value
def get_pseudo_value(self) -> str:
if not self.get_children():
return self.get_value()
assert isinstance(self._pseudo_value, str), type(self._pseudo_value)
return self._pseudo_value
def get_pseudo(
self,
head_type: str,
conc_mode: str,
logging_info: "PredLogger",
tokenizer: data_tokenizer.Tokenizer,
):
"""
head_types are eaither "pred" or "oracle".
The `head` being the right side of the top most equation.
We want a "pred" head if we are composing the pseudo label tree.
We want an "oracle" head at the very top, during training.
We return "pseudo_without_head" for generation when the scratch pad is fed in.
"""
assert head_type in ["pred", "oracle"]
if self.get_children():
if conc_mode == "yield":
a_str, _, masked_pseudo_a = yield from self.get_children()[
0
].get_pseudo(
head_type="pred",
conc_mode=conc_mode,
logging_info=logging_info,
tokenizer=tokenizer,
)
b_str, _, masked_pseudo_b = yield from self.get_children()[
1
].get_pseudo(
head_type="pred",
conc_mode=conc_mode,
logging_info=logging_info,
tokenizer=tokenizer,
)
elif conc_mode == "top_sort":
a_str, _, masked_pseudo_a = self.get_children()[0].get_pseudo(
head_type="pred",
conc_mode=conc_mode,
logging_info=logging_info,
tokenizer=tokenizer,
)
b_str, _, masked_pseudo_b = self.get_children()[1].get_pseudo(
head_type="pred",
conc_mode=conc_mode,
logging_info=logging_info,
tokenizer=tokenizer,
)
else:
raise ValueError(f"Unknown conc_mode: {conc_mode}")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Fetch the answer to the problem, either predicted or oracle
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pseudo_without_head = f"({a_str} {self.get_op()} {b_str} = "
if head_type == "oracle":
head = self.get_value()
elif head_type == "pred":
if conc_mode == "yield":
head = yield dict(
input_str=self.get_input_str(),
pseudo_without_head=pseudo_without_head,
logging_info=logging_info,
)
else:
raise ValueError(f"Unknown conc_mode: {conc_mode}")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Tokenize it
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pseudo_str = f"({a_str} {self.get_op()} {b_str} = {head})"
potential_head = tokenizer(
str(head),
return_tensors=None,
no_eos=True,
strip_special_symbols=True,
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Log the accuracy of the different levels
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if head_type == "pred":
tokenized_oracle_head = tokenizer(
str(self.get_value()),
return_tensors=None,
no_eos=True,
strip_special_symbols=True,
)
logging_info.level_accuracy[self._complexity_level].count_total += 1
if potential_head == tokenized_oracle_head:
logging_info.level_accuracy[self._complexity_level].count_good += 1
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Prepare the label, where the scratchpad should be masked
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if head_type == "pred":
maybe_head_tokens = [-100] * len(potential_head) + [-100]
elif head_type == "oracle":
tokenized = tokenizer(")", return_tensors=None, no_eos=True)
assert isinstance(tokenized, list), type(tokenized)
assert isinstance(potential_head, list), type(potential_head)
maybe_head_tokens = potential_head + tokenized
else:
raise ValueError(f"Unknown head_type: {head_type}")
if head_type == "oracle":
equal_token_ids = tokenizer("=", return_tensors=None, no_eos=True)
else:
equal_token_ids = len(tokenizer("=", return_tensors=None, no_eos=True)) * [-100]
masked_pseudo = (
len(tokenizer("(", return_tensors=None, no_eos=True)) * [-100]
+ masked_pseudo_a
+ len(tokenizer(self.get_op(), return_tensors=None, no_eos=True)) * [-100]
+ masked_pseudo_b
+ equal_token_ids
+ maybe_head_tokens
)
else:
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# If we are of the zeroth level, just return the real,
# & don't alter the accuracy statistics (obviously).
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pseudo_str = f"{self.get_value()}"
pseudo_without_head = f""
masked_pseudo = [-100] * len(tokenizer(pseudo_str, return_tensors=None, no_eos=True))
assert isinstance(pseudo_str, str), type(pseudo_str)
assert isinstance(pseudo_without_head, str), type(pseudo_without_head)
return pseudo_str, pseudo_without_head, masked_pseudo
def __repr__(self) -> str:
return f"Node({self.get_oracle_str()})"
###############################################################################
# Node utility functions
###############################################################################
def get_all_desc(root: "Node") -> Generator["Node", None, None]:
"""
Get all descendants of a node.
Travels in depth first order.
"""
work_stack = [root]
while work_stack:
node = work_stack.pop()
yield node
if node.get_children():
work_stack.extend(node.get_children())
def multiple_get_all_desc(iterable: Iterable["Node"]) -> Generator["Node", None, None]:
"""
Get all descendants of an iterable containnig nodes.
"""
for node in iterable:
yield from get_all_desc(node)
def all_nodes_have_complexity_levels(all_nodes: Iterable["Node"]) -> bool:
"""
Check if all nodes have a complexity level.
"""
for node in all_nodes:
if node.get_complexity_level() is None:
return False
return True
def all_nodes_have_unique_ids(all_nodes: Iterable["Node"]) -> bool:
"""
Name says it all.
"""
seen = set()
for node in all_nodes:
if id(node) in seen:
return False
seen.add(id(node))
return True
def all_nodes_have_root_complexity_levels(all_nodes: Iterable["Node"]) -> bool:
for node in all_nodes:
if node.get_root_complexity_level() is None:
return False
return True
def set_childrens_root_complexity_level(root: Node) -> None:
assert root.get_complexity_level()
root_complexity_level = root.get_complexity_level()
for node in get_all_desc(root):
node.set_root_complexity_level(root_complexity_level)
###############################################################################
# Data generation functions.
###############################################################################
def generate(
config,
previous: list,
all_previous: list,
qty_required: Union[int, str],
complexity_level: int,
name: str = "",
filter_lambda: Optional[Callable] = None,
) -> Generator["Node", None, None]:
"""
Where the data generation actually happens.
qty_each_op is per direction
"""
if qty_required == "all":
for op in config.operators:
LOGGER.debug(f"({name}): Doing all {len(previous) * len(all_previous)}")
uniques = set()
for a in previous:
for b in all_previous:
uniques.add((a, b))
uniques.add((b, a))
for a, b in uniques:
a = copy.deepcopy(a)
b = copy.deepcopy(b)
new_node = Node(
op=op,
children=[a, b],
value=OPMAP[op](a.get_value(), b.get_value()),
complexity_level=complexity_level,
)
if filter_lambda is not None:
if filter_lambda(new_node):
yield new_node
else:
yield new_node
return
else:
assert isinstance(qty_required, int)
qty_each_op = math.ceil(qty_required / (len(config.operators)))
qty_per_side = math.ceil(qty_each_op / 2)
for op_no, op in enumerate(config.operators):
uniques = set()
for side in ["right", "left"]:
if side == "right":
a_s = np.random.choice(previous, qty_per_side, replace=True)
b_s = np.random.choice(all_previous, qty_per_side, replace=True)
elif side == "left":
a_s = np.random.choice(all_previous, qty_per_side, replace=True)
b_s = np.random.choice(previous, qty_per_side, replace=True)
else:
raise ValueError(side)
uniques.update(zip(a_s, b_s))
rich.print(
f"[red]({name}): {op_no + 1}/{len(config.operators)} {side = } {qty_per_side = }, "
f"{len(uniques) = }, {len(uniques) / qty_each_op = :0.1%}"
)
while len(uniques) < qty_each_op:
for side in ["right", "left"]:
if side == "right":
a_s = np.random.choice(previous, qty_per_side, replace=True)
b_s = np.random.choice(all_previous, qty_per_side, replace=True)
elif side == "left":
a_s = np.random.choice(all_previous, qty_per_side, replace=True)
b_s = np.random.choice(previous, qty_per_side, replace=True)
else:
raise ValueError(side)
# We want to add just the right quantity of values. Computing the
# contains operator twice is a bit awkward, but it's not a big deal
# (the whole datagen takes under 15 seconds)
good_ones = [(a, b) for a, b in zip(a_s, b_s) if a not in uniques]
uniques.update(good_ones[: qty_each_op - len(uniques)])
LOGGER.debug(f"[attempt] {qty_each_op} {len(uniques)}")
uniqe_roots = []
for sub_node_a, sub_node_b in tqdm(uniques, desc="building nodes"):
# This compying is necessary because we save the depth of the
# node inside of the node, and the depth of a node will depend
# on what tree it belongs to, so we can't just reuse the nodes.
sub_node_a = copy.deepcopy(sub_node_a)
sub_node_b = copy.deepcopy(sub_node_b)
new_node = Node(
op=op,
children=[sub_node_a, sub_node_b],
value=OPMAP[op](sub_node_a.get_value(), sub_node_b.get_value()),
complexity_level=complexity_level,
)
uniqe_roots.append(new_node)
if filter_lambda is not None:
yield from filter(filter_lambda, uniqe_roots)
else:
yield from uniqe_roots
@beartype
def filter_length(
root: Node,
max_len_answer: Optional[int],
max_len_total: Optional[int],
tokenizer: data_tokenizer.Tokenizer,
) -> bool:
complete_str = root.get_oracle_str()[0]
complete_tokens = tokenizer(complete_str, return_tensors=None, no_eos=True)
# Check complete length
if max_len_total is not None and len(complete_tokens) > max_len_total:
return False
# Check answer length
if max_len_answer is None:
return True
for node in get_all_desc(root):
answer = node.get_value()
answer_tokens = tokenizer(answer, return_tensors=None, no_eos=True)
if len(answer_tokens) > max_len_answer:
return False
return True
class FilterLengthFunctor:
def __init__(self, max_len_answer, max_len_total, tokenizer):
self.max_len_answer = max_len_answer
self.max_len_total = max_len_total
self.tokenizer = tokenizer
def __call__(self, root):
return filter_length(
root, self.max_len_answer, self.max_len_total, self.tokenizer
)
def zeroth_level(config):
###########################################################################
# Prepare the node for the zero-th level
# Zeroth level nodes are a special case because they're the same
# for both sets. (& don't have subnodes)
###########################################################################
train = [
Node(
op=None,
children=None,
value=value,
complexity_level=0,
)
for value in range(10 ** config.max_digits)
]
eval = copy.deepcopy(train)
return dict(train=train, eval=eval)
def first_level_and_more(
config: "EquationConfig",
qty: int,
complexity_level: int,
split_previous,
all_split_previous,
filter_length_lambda,
):
###########################################################################
# Level 3 nodes.
# Level 3 nodes are the first nodes where it isn't a special case in any
# way. For a set, the nodes of the level are generated from the nodes of
# previous levels, respecting the sets.
###########################################################################
new = {}
for split_name, split_previous_roots in split_previous.items():
new[split_name] = list(
generate(
config=config,
previous=split_previous_roots,
all_previous=all_split_previous[split_name],
qty_required="all" if complexity_level <= 2 else int(qty * 1.25),
complexity_level=complexity_level,
filter_lambda=filter_length_lambda,
name=f"{split_name} {complexity_level}",
)
)
random.shuffle(new[split_name])
new[split_name] = new[split_name][:qty]
return new
def generate_data(
config: "EquationConfig",
) -> dict[str, dict[int, Any]]:
tokenizer = data_tokenizer.ArithmeticTokenizer()
filter_length_lambda = FilterLengthFunctor(
config.max_answer_length, config.max_total_length, tokenizer
)
zeroth_l = zeroth_level(config)
per_set = {split: {0: zeroth_l[split]} for split in ["train", "eval"]}
for level in range(1, config.max_depth + 1):
new = first_level_and_more(
config=config,
qty=config.max_qty_per_level,
complexity_level=level,
split_previous={
split: per_set[split][level - 1] for split in ["train", "eval"]
},
all_split_previous={
split: general_utils.concat_lists(per_set[split].values())
for split in ["train", "eval"]
},
filter_length_lambda=filter_length_lambda,
)
for split, nodes in new.items():
per_set[split][level] = nodes
# We don't save zeroth level nodes. There's nothing to learn from them.
for per_level in per_set.values():
del per_level[0]
###########################################################################
# Fix the lengths of the second layer.
# Needs to be done after level 3 because we don't want to needlessly
# throw away equations that could be used in level 3.
###########################################################################
for k in per_set:
per_set[k][2] = per_set[k][2][: config.max_qty_per_level]
################################################################################
# Make some checks on all root nodes, fix root_level_complexity
################################################################################
print("Building a list of all nodes.")
all_root_nodes = general_utils.concat_lists(
general_utils.concat_lists(
[[v for v in tqdm(x.values())] for x in tqdm(per_set.values())]
)
)
all_nodes = list(multiple_get_all_desc(all_root_nodes))
if DEBUG:
print("Doing some checks.")
assert len(set(all_nodes)) == len(all_nodes), "Duplicate nodes"
assert all_nodes_have_unique_ids(all_nodes)
assert all_nodes_have_complexity_levels(all_nodes)
print("Setting root_level_complexity.")
for top_level_node in tqdm(all_root_nodes):
set_childrens_root_complexity_level(top_level_node)
if DEBUG:
print("Final check")
assert all_nodes_have_root_complexity_levels(all_nodes)
################################################################################
# Print the lengths
################################################################################
print("Final lengths:")
lengths = {}
for cv_set_name, cv_set_per_level in tqdm(per_set.items()):
lengths[cv_set_name] = {
level_idx: len(level_nodes)
for level_idx, level_nodes in cv_set_per_level.items()
}
rich.print(lengths)
return per_set
class PredLogger:
"""
Logger object for the self learned mode.
"""
__slots__ = (
# "root",
"level_accuracy",
)
@dataclasses.dataclass
class Accuracy:
count_good: int = 0
count_total: int = 0
def compute(self):
return f"{self.count_good}/{self.count_total}, {self.count_good / self.count_total:.1%}"
def __init__(
self,
):
self.level_accuracy = collections.defaultdict(self.Accuracy)
def log(self):
for k, v in self.level_accuracy.items():
rich.print(f"[bright_cyan]Level {k}[/]: {v.compute()}")
class EquationConfig:
# misc
@beartype
def __init__(
self,
*,
max_depth: int,
max_total_length: int,
max_answer_length: int,
max_qty_per_level: int,
):
# Checks
assert max_total_length
assert (
max_total_length < 1024
), "This is the length of the whole context of BART, it's the hardest limit."
# Values coming from args
self.max_depth: Final[int] = max_depth
self.max_total_length: Final[int] = max_total_length
self.max_qty_per_level: Final[int] = max_qty_per_level
self.max_answer_length: Final[int] = max_answer_length
# Hardcoded or computed values
self.seed: Final[int] = 1337
self.operators: Final[set[str]] = {"+", "*", "-"}
self.max_digits: Final[int] = 1
self.output_name: Final[
str
] = f"{self.max_total_length}_{self.max_answer_length}_{self.max_depth}_{self.max_qty_per_level}.json"
def to_json_dict(self) -> dict[str, Any]:
base_dict = vars(self)
base_dict["operators"] = list(self.operators)
return base_dict
@classmethod
def from_json_dict(cls, json_dict) -> "EquationConfig":
json_dict["operators"] = set(json_dict["operators"])
config_obj = cls(
max_depth=json_dict["max_depth"],
max_total_length=json_dict["max_total_length"],
max_answer_length=json_dict["max_answer_length"],
max_qty_per_level=json_dict["max_qty_per_level"],
)
obj_dict: Final[dict[str, Any]] = vars(config_obj)
# Verify that the dicts are the same.
if not obj_dict == json_dict:
assert obj_dict.keys() == json_dict.keys(), (