diff --git a/src/Algorithms/CARLIN/reach.jl b/src/Algorithms/CARLIN/reach.jl index 422fce111..194be13e9 100644 --- a/src/Algorithms/CARLIN/reach.jl +++ b/src/Algorithms/CARLIN/reach.jl @@ -57,7 +57,7 @@ end function _compute_resets(resets::Vector{Float64}, T) # assumes initial time is 0 aux = vcat(0.0, resets, T) - return [interval(aux[i], aux[i + 1]) for i in 1:(length(aux) - 1)] + return [IA.interval(aux[i], aux[i + 1]) for i in 1:(length(aux) - 1)] end function reach_CARLIN_resets(X0, F1, F2, resets; alg, N, T, Δt, bloat, compress) diff --git a/src/Discretization/Overapproximate.jl b/src/Discretization/Overapproximate.jl index d2716b4ea..0bcb7b8b7 100644 --- a/src/Discretization/Overapproximate.jl +++ b/src/Discretization/Overapproximate.jl @@ -1,7 +1,6 @@ module Overapproximate using LazySets -import LazySets: _split using IntervalMatrices using StaticArrays: SVector, SMatrix, MMatrix, StaticArray import IntervalArithmetic as IA diff --git a/src/ReachSets/AbstractReachSet.jl b/src/ReachSets/AbstractReachSet.jl index c31732378..6793c5f7c 100644 --- a/src/ReachSets/AbstractReachSet.jl +++ b/src/ReachSets/AbstractReachSet.jl @@ -67,7 +67,7 @@ Return the type of the set representation of this reach-set. Type of the set representation of the given reach-set. """ -setrep(::AbstractReachSet) +function setrep(::AbstractReachSet) end """ tstart(R::AbstractReachSet) diff --git a/src/ReachSets/TaylorModelReachSet.jl b/src/ReachSets/TaylorModelReachSet.jl index 624b82899..06030a2ba 100644 --- a/src/ReachSets/TaylorModelReachSet.jl +++ b/src/ReachSets/TaylorModelReachSet.jl @@ -501,7 +501,7 @@ function _overapproximate_structured(Z::AbstractZonotope{N}, ::Type{<:TaylorMode @inbounds for i in 1:n pi = c[i] + sum(view(M, i, :) .* x) di = abs(D[i, i]) - rem = interval(-di, di) + rem = IA.interval(-di, di) vTM[i] = TaylorModel1(Taylor1(pi, orderT), rem, zeroI, Δtn) end @@ -543,7 +543,7 @@ function _overapproximate_structured(Zcp::CartesianProduct{N,<:Zonotope,<:Interv @inbounds begin pi = mid(Y.dat) + zero(TaylorN(1; order=orderQ)) d = diam(Y.dat) / 2 - rem = interval(-d, d) + rem = IA.interval(-d, d) vTM[n] = TaylorModel1(Taylor1(pi, orderT), rem, zeroI, Δtn) end return TaylorModelReachSet(vTM, Δt) @@ -574,7 +574,7 @@ function _overapproximate_structured_full(Zcp::CartesianProduct{N,<:Zonotope,<:I @inbounds for i in 1:n pi = c[i] + sum(view(G, i, 1:(n + 1)) .* x) + zero(TaylorN(n + 1; order=orderQ)) d = abs(G[i, n + 1 + i]) - rem = interval(-d, d) + rem = IA.interval(-d, d) vTM[i] = TaylorModel1(Taylor1(pi, orderT), rem, zeroI, Δtn) end @@ -582,7 +582,7 @@ function _overapproximate_structured_full(Zcp::CartesianProduct{N,<:Zonotope,<:I I = Zcp.Y.dat pi = mid(I) + zero(TaylorN(n + 1; order=orderQ)) d = diam(I) / 2 - rem = interval(-d, d) + rem = IA.interval(-d, d) @inbounds vTM[n + 1] = TaylorModel1(Taylor1(pi, orderT), rem, zeroI, Δtn) return TaylorModelReachSet(vTM, Δt)