-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutil.py
138 lines (92 loc) · 4.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import pdb
import math
import numpy as np
def lg10(x):
return torch.div(torch.log(x), math.log(10))
def maxOfTwo(x, y):
z = x.clone()
maskYLarger = torch.lt(x, y)
z[maskYLarger.detach()] = y[maskYLarger.detach()]
return z
def nValid(x):
return torch.sum(torch.eq(x, x).float())
def nNanElement(x):
return torch.sum(torch.ne(x, x).float())
def getNanMask(x):
return torch.ne(x, x)
def setNanToZero(input, target):
nanMask = getNanMask(target)
nValidElement = nValid(target)
_input = input.clone()
_target = target.clone()
_input[nanMask] = 0
_target[nanMask] = 0
return _input, _target, nanMask, nValidElement
def evaluateError(output, target):
# f = open('./record.txt', 'w')
errors = {'MSE': 0, 'RMSE': 0, 'ABS_REL': 0, 'LG10': 0,
'MAE': 0, 'DELTA1': 0, 'DELTA2': 0, 'DELTA3': 0}
_output, _target, nanMask, nValidElement = setNanToZero(output, target)
#
if (nValidElement.data.cpu().numpy() > 0):
diffMatrix = torch.abs(_output - _target)
errors['MSE'] = torch.sum(torch.pow(diffMatrix, 2)) / nValidElement
errors['RMSE'] = torch.sqrt(errors['MSE'])
errors['MAE'] = torch.sum(diffMatrix) / nValidElement
realMatrix = torch.div(diffMatrix, _target)
realMatrix[nanMask] = 0
errors['ABS_REL'] = torch.sum(realMatrix) / nValidElement
#del realMatrix
#del diffMatrix
LG10Matrix = torch.abs(lg10(_output) - lg10(_target))
LG10Matrix[nanMask] = 0
errors['LG10'] = torch.sum(LG10Matrix) / nValidElement
#del LG10Matrix
yOverZ = torch.div(_output, _target)
zOverY = torch.div(_target, _output)
maxRatio = maxOfTwo(yOverZ, zOverY)
errors['DELTA1'] = torch.sum(
torch.le(maxRatio, 1.25).float()) / nValidElement
errors['DELTA2'] = torch.sum(
torch.le(maxRatio, math.pow(1.25, 2)).float()) / nValidElement
errors['DELTA3'] = torch.sum(
torch.le(maxRatio, math.pow(1.25, 3)).float()) / nValidElement
errors['MSE'] = float(errors['MSE'].data.cpu().numpy())
errors['RMSE'] = float(errors['RMSE'].data.cpu().numpy())
errors['ABS_REL'] = float(errors['ABS_REL'].data.cpu().numpy())
errors['LG10'] = float(errors['LG10'].data.cpu().numpy())
errors['MAE'] = float(errors['MAE'].data.cpu().numpy())
# errors['PERC'] = float(errors['PERC'].data.cpu().numpy())
errors['DELTA1'] = float(errors['DELTA1'].data.cpu().numpy())
errors['DELTA2'] = float(errors['DELTA2'].data.cpu().numpy())
errors['DELTA3'] = float(errors['DELTA3'].data.cpu().numpy())
#del yOverZ, zOverY, maxRatio
# f.write(' nValidElement = ' + str(nValidElement) + ' _output ' + str(_output) + ' _target ' + str(_target) + 'maxRatio ' + str(maxRatio) + 'torch.le(maxRatio, 1.25).float()' + str(torch.le(maxRatio, 1.25).float()) + '\n')
#pdb.set_trace()
return errors
def addErrors(errorSum, errors, batchSize):
# pdb.set_trace()
errorSum['MSE']=errorSum['MSE'] + errors['MSE'] * batchSize
errorSum['RMSE']=errorSum['RMSE'] + errors['RMSE'] * batchSize
errorSum['ABS_REL']=errorSum['ABS_REL'] + errors['ABS_REL'] * batchSize
errorSum['LG10']=errorSum['LG10'] + errors['LG10'] * batchSize
errorSum['MAE']=errorSum['MAE'] + errors['MAE'] * batchSize
# errorSum['PERC'] = errorSum['PERC'] + errors['PERC'] * batchSize
errorSum['DELTA1']=errorSum['DELTA1'] + errors['DELTA1'] * batchSize
errorSum['DELTA2']=errorSum['DELTA2'] + errors['DELTA2'] * batchSize
errorSum['DELTA3']=errorSum['DELTA3'] + errors['DELTA3'] * batchSize
return errorSum
def averageErrors(errorSum, N):
averageError={'MSE': 0, 'RMSE': 0, 'ABS_REL': 0, 'LG10': 0,
'MAE': 0, 'DELTA1': 0, 'DELTA2': 0, 'DELTA3': 0}
averageError['MSE'] = errorSum['MSE'] / N
averageError['RMSE'] = errorSum['RMSE'] / N
averageError['ABS_REL'] = errorSum['ABS_REL'] / N
averageError['LG10'] = errorSum['LG10'] / N
averageError['MAE'] = errorSum['MAE'] / N
# errorSum['PERC'] = errorSum['PERC'] / N
averageError['DELTA1'] = errorSum['DELTA1'] / N
averageError['DELTA2'] = errorSum['DELTA2'] / N
averageError['DELTA3'] = errorSum['DELTA3'] / N
return averageError