Given the root
of a binary tree, return the bottom-up level order traversal of its nodes' values. (i.e., from left to right, level by level from leaf to root).
Example 1:
Input: root = [3,9,20,null,null,15,7] Output: [[15,7],[9,20],[3]]
Example 2:
Input: root = [1] Output: [[1]]
Example 3:
Input: root = [] Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 2000]
. -1000 <= Node.val <= 1000
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def levelOrderBottom(self, root: TreeNode) -> List[List[int]]:
if root is None:
return []
q = [root]
res = []
while q:
size = len(q)
t = []
for _ in range(size):
node = q.pop(0)
t.append(node.val)
if node.left is not None:
q.append(node.left)
if node.right is not None:
q.append(node.right)
res.append(t)
return res[::-1]
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
if (root == null) return Collections.emptyList();
Deque<TreeNode> q = new ArrayDeque<>();
List<List<Integer>> res = new ArrayList<>();
q.offer(root);
while (!q.isEmpty()) {
int size = q.size();
List<Integer> t = new ArrayList<>();
while (size-- > 0) {
TreeNode node = q.poll();
t.add(node.val);
if (node.left != null) q.offer(node.left);
if (node.right != null) q.offer(node.right);
}
res.add(0, t);
}
return res;
}
}