You are given an empty 2D binary grid grid
of size m x n
. The grid represents a map where 0
's represent water and 1
's represent land. Initially, all the cells of grid
are water cells (i.e., all the cells are 0
's).
We may perform an add land operation which turns the water at position into a land. You are given an array positions
where positions[i] = [ri, ci]
is the position (ri, ci)
at which we should operate the ith
operation.
Return an array of integers answer
where answer[i]
is the number of islands after turning the cell (ri, ci)
into a land.
An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
Example 1:
Input: m = 3, n = 3, positions = [[0,0],[0,1],[1,2],[2,1]] Output: [1,1,2,3] Explanation: Initially, the 2d grid is filled with water. - Operation #1: addLand(0, 0) turns the water at grid[0][0] into a land. We have 1 island. - Operation #2: addLand(0, 1) turns the water at grid[0][1] into a land. We still have 1 island. - Operation #3: addLand(1, 2) turns the water at grid[1][2] into a land. We have 2 islands. - Operation #4: addLand(2, 1) turns the water at grid[2][1] into a land. We have 3 islands.
Example 2:
Input: m = 1, n = 1, positions = [[0,0]] Output: [1]
Constraints:
1 <= m, n, positions.length <= 104
1 <= m * n <= 104
positions[i].length == 2
0 <= ri < m
0 <= ci < n
Follow up: Could you solve it in time complexity O(k log(mn))
, where k == positions.length
?