给定一棵二叉树的根节点 root
和 TreeNode
类对象的数组(列表) nodes
,返回 nodes
中所有节点的最近公共祖先(LCA)。数组(列表)中所有节点都存在于该二叉树中,且二叉树中所有节点的值都是互不相同的。
我们扩展二叉树的最近公共祖先节点在维基百科上的定义:“对于任意合理的 i
值, n
个节点 p1
、 p2
、...、 pn
在二叉树 T
中的最近公共祖先节点是后代中包含所有节点 pi
的最深节点(我们允许一个节点是其自身的后代)”。一个节点 x
的后代节点是节点 x
到某一叶节点间的路径中的节点 y
。
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [4,7] 输出: 2 解释: 节点 4 和 7 的最近公共祖先是 2。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [1] 输出: 1 解释: 单个节点的最近公共祖先是该节点本身。
示例 3:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [7,6,2,4] 输出: 5 解释: 节点 7、6、2 和 4 的最近公共祖先节点是 5。
示例 4:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [0,1,2,3,4,5,6,7,8] 输出: 3 解释: 树中所有节点的最近公共祖先是根节点。
提示:
- 树中节点个数的范围是
[1, 104]
。 -109 <= Node.val <= 109
- 所有的
Node.val
都是互不相同的。 - 所有的
nodes[i]
都存在于该树中。 - 所有的
nodes[i]
都是互不相同的。