-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patheval_bertmap.py
295 lines (253 loc) · 11.2 KB
/
eval_bertmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""Script for evaluating different BERTMap systems as follows:
1. select hyperparameters (mapping threshold) on the validation set (10% of the ref mappings)
2. use such threshold to generate the test-set result (90% refs for unsupervised and 70% refs for semi-supervised)
"""
# append the paths
import os
main_dir = os.getcwd().split("BERTMap")[0] + "BERTMap"
# os.environ["TOKENIZERS_PARALLELISM"] = "false" # disable huggingface tokenizer paralellism
import sys
sys.path.append(main_dir)
# import essentials
import argparse
import json
from shutil import copy2
from pathlib import Path
import multiprocessing_on_dill
import pandas as pd
# import bertmap
from bertmap import na_vals
from bertmap.utils import evenly_divide, set_seed, banner
from bertmap.map import OntoMapping
task_dir = ""
exp_dir = ""
map_dir = ""
extended_set_type = ""
def eval_maps(config, mode, candidate_limit, strategy=None, best_set_type=""):
global task_dir, exp_dir, extended_set_type
task_dir = config["data"]["task_dir"]
extended_set_type = best_set_type
if mode == "bertmap":
fine_tune_params = config["fine-tune"]
learn = fine_tune_params["learning"]
# assert learn == "us" or learn == "ss"
include_ids = fine_tune_params["include_ids"]
banner(f"evaluate fine-tuned models of {learn} settings", sym="#")
exp_dir = (
task_dir + f"/fine-tune.exp/{learn}.exp"
if not include_ids
else task_dir + f"/fine-tune.exp/{learn}.ids.exp"
)
validate_then_test(config=config, candidate_limit=candidate_limit)
elif mode == "bertembeds":
if not strategy:
for strt in ["cls", "mean"]:
exp_dir = task_dir + f"/{strt}-embeds.exp"
validate_then_test(config=config, candidate_limit=candidate_limit)
else:
exp_dir = task_dir + f"/{strategy}-embeds.exp"
validate_then_test(config=config, candidate_limit=candidate_limit)
elif mode == "edit":
exp_dir = task_dir + "/nes.exp"
validate_then_test(config=config, candidate_limit=candidate_limit)
else:
raise ValueError("invalid option of mode ...")
return best_set_type
def validate_then_test(config, candidate_limit: int):
global map_dir
map_dir = f"{exp_dir}/map.{candidate_limit}"
if extended_set_type:
map_dir = f"{exp_dir}/map.{candidate_limit}/extended"
best_bertmap_ind, best_strm_ind = validate_maps(config=config, candidate_limit=candidate_limit)
if not best_bertmap_ind:
# if already generated a validation results
val_file = f"{map_dir}/results.val.{candidate_limit}.csv"
val_results = pd.read_csv(val_file, index_col=0)
best_bertmap_ind = list(val_results[:-3].idxmax()[["F1"]])[0]
best_strm_ind = list(val_results[-3:].idxmax()[["F1"]])[0]
banner(
f"found best hyperparameters: {best_bertmap_ind} (BERTMap) {best_strm_ind} (String-match)"
)
# OntoMapping.print_eval(val_file, "(validation)")
# generate 70% results for both unsupervised and semi-supervised setting for comparison
test_maps(config, candidate_limit, best_bertmap_ind, best_strm_ind, semi_supervised=True)
if "us" in str(config["fine-tune"]["learning"]):
test_maps(config, candidate_limit, best_bertmap_ind, best_strm_ind, semi_supervised=False)
def test_maps(
config, candidate_limit: int, best_hyper: str, best_strm_hyper: str, semi_supervised: bool
):
if semi_supervised:
eval_file = f"{map_dir}/results.test.ss.{candidate_limit}.csv"
else:
eval_file = f"{map_dir}/results.test.us.{candidate_limit}.csv"
if os.path.exists(eval_file):
print(f"skip map testing for candidate limit {candidate_limit} as existed ...")
return
# select the best mapping set-threshold combination according to validation results
set_type, threshold = best_hyper.split(":") # src/tgt/combined:threshold
mapping_file = f"{map_dir}/{set_type}.{candidate_limit}.tsv"
# configure reference mappings and mappings to be ignored
ref = f"{task_dir}/refs/maps.ref.full.tsv"
train_maps_df = pd.read_csv(
f"{task_dir}/refs/maps.ref.ss.train.tsv", sep="\t", na_values=na_vals, keep_default_na=False
)
val_maps_df = pd.read_csv(
f"{task_dir}/refs/maps.ref.ss.val.tsv", sep="\t", na_values=na_vals, keep_default_na=False
)
ref_ignored = (
f"{task_dir}/refs/maps.ignored.tsv" if config["corpora"]["ignored_mappings_file"] else None
)
if ref_ignored:
ref_ignored = pd.read_csv(ref_ignored, sep="\t", na_values=na_vals, keep_default_na=False)
else:
# init mappings to be ignored if there is no pre-defined one
ref_ignored = pd.DataFrame(columns=["Entity1", "Entity2", "Value"])
if semi_supervised:
# train + val (30%) should be ignored for semi-supervised setting
ref_ignored = ref_ignored.append(val_maps_df).append(train_maps_df).reset_index(drop=True)
else:
# only val (10%) should be ignored for unsupervised setting
ref_ignored = ref_ignored.append(val_maps_df).reset_index(drop=True)
# evaluate the corresponding test-set result
result = OntoMapping.evaluate(mapping_file, ref, ref_ignored, float(threshold), set_type)
# evaluate the baseline string-matching results
set_type, threshold = best_strm_hyper.split(":") # src/tgt/combined:threshold
# This line fixes the bug on string-match evaluation
mapping_file = f"{map_dir}/{set_type}.{candidate_limit}.tsv"
result_strm = OntoMapping.evaluate(mapping_file, ref, ref_ignored, float(threshold), set_type)
result = result.append(result_strm)
result.to_csv(eval_file)
if semi_supervised:
banner("70% test set results (semi-supervised)")
else:
banner("90% test set results (unsupervised)")
print(result)
return result
def validate_maps(config, candidate_limit: int):
eval_file = f"{map_dir}/results.val.{candidate_limit}.csv"
if os.path.exists(eval_file):
print(f"skip map validation for candidate limit {candidate_limit} as existed ...")
return None, None
report = pd.DataFrame(columns=["#Mappings", "#Ignored", "Precision", "Recall", "F1"])
ref = f"{task_dir}/refs/maps.ref.full.tsv"
ref_ignored = (
f"{task_dir}/refs/maps.ignored.tsv" if config["corpora"]["ignored_mappings_file"] else None
)
if ref_ignored:
ref_ignored = pd.read_csv(ref_ignored, sep="\t", na_values=na_vals, keep_default_na=False)
else:
# init mappings to be ignored if there is no pre-defined one
ref_ignored = pd.DataFrame(columns=["Entity1", "Entity2", "Value"])
train_maps_df = pd.read_csv(
f"{task_dir}/refs/maps.ref.ss.train.tsv", sep="\t", na_values=na_vals, keep_default_na=False
)
test_maps_df = pd.read_csv(
f"{task_dir}/refs/maps.ref.ss.test.tsv", sep="\t", na_values=na_vals, keep_default_na=False
)
# during validation, training and testing mappings should be ignored
ref_ignored = ref_ignored.append(train_maps_df).append(test_maps_df).reset_index(drop=True)
pool = multiprocessing_on_dill.Pool(10)
eval_results = []
thresholds = (
evenly_divide(0, 0.8, 8) + evenly_divide(0.9, 0.97, 7) + evenly_divide(0.98, 1.0, 20)
)
cb_map_path = f"{exp_dir}/map.{candidate_limit}/combined.{candidate_limit}.tsv"
src_map_path = f"{exp_dir}/map.{candidate_limit}/src.{candidate_limit}.tsv"
tgt_map_path = f"{exp_dir}/map.{candidate_limit}/tgt.{candidate_limit}.tsv"
if extended_set_type == "combined":
cb_map_path = f"{map_dir}/combined.{candidate_limit}.tsv"
elif extended_set_type == "src":
src_map_path = f"{map_dir}/src.{candidate_limit}.tsv"
elif extended_set_type == "tgt":
tgt_map_path = f"{map_dir}/tgt.{candidate_limit}.tsv"
for threshold in thresholds:
threshold = round(threshold, 6)
eval_results.append(
pool.apply_async(
OntoMapping.evaluate,
args=(
cb_map_path,
ref,
ref_ignored,
threshold,
f"combined",
),
)
)
eval_results.append(
pool.apply_async(
OntoMapping.evaluate,
args=(
src_map_path,
ref,
ref_ignored,
threshold,
f"src",
),
)
)
eval_results.append(
pool.apply_async(
OntoMapping.evaluate,
args=(
tgt_map_path,
ref,
ref_ignored,
threshold,
f"tgt",
),
)
)
pool.close()
pool.join()
for result in eval_results:
result = result.get()
report = report.append(result)
print(report)
report.to_csv(eval_file)
OntoMapping.print_eval(eval_file, "(validation)")
# return the best validation hyperparameter
best_bertmap_ind = list(report[:-3].idxmax()[["F1"]])[0]
best_string_match_ind = list(report[-3:].idxmax()[["F1"]])[0]
return best_bertmap_ind, best_string_match_ind
if __name__ == "__main__":
set_seed(888)
# parse configuration file and specify mode
parser = argparse.ArgumentParser(description="run bertmap system")
parser.add_argument(
"-c", "--config", type=str, help="configuration file for bertmap system", required=True
)
parser.add_argument(
"-m",
"--mode",
type=str,
choices={"bertmap", "bertembeds", "edit"},
default="bertmap",
help="preprocessing data (pre), training BERT model (train), or computing the mappings and evaluate them (map)",
)
parser.add_argument(
"-e",
"--extended",
type=str,
choices={"src", "tgt", "combined", ""},
default="",
help="the best set type from first round of validation",
)
args = parser.parse_args()
banner("load configurations", sym="#")
print(f"configuration-file: {args.config}")
print(f"mode: {args.mode}")
with open(args.config, "r") as f:
config_json = json.load(f)
for stage, stage_config in config_json.items():
print(f"{stage} params:")
for param, value in stage_config.items():
print(f"\t{param}: {value}")
Path(config_json["data"]["task_dir"] + "/configs").mkdir(parents=True, exist_ok=True)
config_file = config_json["data"]["task_dir"] + "/configs/" + args.config.split("/")[-1]
if os.path.exists(config_file):
print("config file already existed, use the existed one ...")
else:
copy2(args.config, config_file)
for limit in config_json["map"]["candidate_limits"]:
eval_maps(config=config_json, mode=args.mode, candidate_limit=limit, best_set_type=args.extended)