-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
83 lines (69 loc) · 2.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
import numpy as np
class MaskCriterion(nn.Module):
"""calculate the CrossEntropyLoss in mask=1 area"""
def __init__(self):
super(MaskCriterion, self).__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, target, mask):
"""
logits: shape of (N, seq_len - 1, vocab_size)
target: shape of (N, seq_len)
mask: shape of (N, seq_len)
"""
item_sum = logits.shape[0]*logits.shape[1] # N * seq_len
target, mask = target[:, 1:], mask[:, 1:]
# loss [N*seq_len]
loss = self.loss_fn(logits.contiguous().view(item_sum, -1),
target.contiguous().view(-1))
mask_loss = loss * mask.contiguous().view(-1)
output = torch.sum(mask_loss) / torch.sum(mask)
return output
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
"""This class is from https://github.com/Bjarten/early-stopping-pytorch/blob/master/pytorchtools.py"""
def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
def __call__(self, val_loss, model):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model)
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model)
self.counter = 0
def save_checkpoint(self, val_loss, model):
"""Saves model when validation loss decrease."""
if self.verbose:
self.trace_func(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model, self.path)
self.val_loss_min = val_loss