-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpreprocess.py
475 lines (352 loc) · 16.3 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import numpy as np
import cv2
import matplotlib.pyplot as plt # noqa
from math import ceil, floor # noqa
from utils import display_image, most_frequent, convert_to_binary_and_invert
def get_baseline_y_coord(horizontal_projection):
baseline_y_coord = np.where(horizontal_projection == np.amax(horizontal_projection))
return baseline_y_coord[0][0]
def get_horizontal_projection(image):
h, w = image.shape
horizontal_projection = cv2.reduce(src=image, dim=-1, rtype=cv2.REDUCE_SUM, dtype=cv2.CV_32S)
# plt.plot(range(h), horizontal_projection.tolist())
# plt.savefig("./figs/horizontal_projection.png")
return horizontal_projection
def get_vertical_projection(image):
h, w = image.shape
vertical_projection = []
vertical_projection = cv2.reduce(src=image, dim=0, rtype=cv2.REDUCE_SUM, dtype=cv2.CV_32S)
# plt.plot(range(w), vertical_projection[0])
# plt.savefig("./figs/vertical_projection.png")
return vertical_projection[0]
def deskew(image):
# get all white pixels coords (the foreground pixels)
coords = np.column_stack(np.where(image > 0))
# minAreaRect computes the minimum rotated rectangle that contains the entire text region.
angle = cv2.minAreaRect(coords)[-1]
if angle < -45:
angle = -(90 + angle)
else:
angle = -angle
# now rotate the image with the obtained angle
print("angle: ", angle)
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
# calculate rotation matrix
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
return rotated
def get_largest_connected_component(image):
# image = cv2.erode(image, np.ones((2,2), np.uint8), iterations=1)
# image = cv2.dilate(image, np.ones((2,2), np.uint8), iterations=1)
# image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, np.ones((2,2), np.uint8))
# image = cv2.morphologyEx(image, cv2.MORPH_OPEN, np.ones((2,2), np.uint8))
# display_image("after erode+dilate", image)
number_of_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8)
sizes = stats[:, -1]
max_label = 1
max_size = sizes[1]
for i in range(2, number_of_components):
if sizes[i] > max_size:
max_label = i
max_size = sizes[i]
print("max label is: ", max_label)
image2 = np.zeros(output.shape)
image2[output == max_label] = 255
image2 = image2.astype(np.uint8)
display_image("Biggest component", image2)
return image2
def get_pen_size(image):
vertical_projection = get_vertical_projection(image)
most_freq_vertical = most_frequent(vertical_projection)
# print("most frq hor: ", most_freq_horizontal)
# if most_freq_horizontal > most_freq_vertical:
# return most_freq_vertical
return most_freq_vertical
# call on line image to find the max transition line, above the baseline
def find_max_transition(image_original):
image = image_original.copy()
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
horizontal_projection = get_horizontal_projection(image)
baseline = get_baseline_y_coord(horizontal_projection)
max_transitions = 0
max_transition_line = baseline
h, w = image.shape
for i in range(baseline, -1, -1):
current_transitions = 0
flag = 0
for j in range(w - 1, -1, -1):
if image[i, j] == 255 and flag == 0:
current_transitions += 1
flag = 1
elif image[i, j] != 255 and flag == 1:
flag = 0
if current_transitions >= max_transitions:
max_transitions = current_transitions
max_transition_line = i
# cv2.line(image, (0, max_transition_line), (w, max_transition_line), (255, 255, 255), 1)
# cv2.line(image, (0, baseline), (w, baseline), (255, 255, 255), 1)
# display_image("max transitions", image)
return max_transition_line
def get_start_end_points_sr(image, max_transition_index):
flag = 0
image_co = image.copy()
separation_regions = []
h, w = image.shape
sr = [-1, -1] # white to black --> start
for j in range(w - 1, -1, -1): # black to white --> end
if image[max_transition_index, j] == 255 and flag == 0:
sr[1] = j
flag = 1
elif image[max_transition_index, j] != 255 and flag == 1:
flag = 0
sr[0] = j
if -1 not in sr:
separation_regions.append(sr)
sr = [-1, -1]
# for sr in separation_regions:
# cv2.line(image_co, (sr[0], 0), (sr[0], h), (255, 255, 255), 1) # for debugging
# cv2.line(image_co, (sr[1], 0), (sr[1], h), (255, 255, 255), 1) # for debugging
display_image("after ", image_co)
print(separation_regions)
def get_cut_points(image, max_transition_index, vertical_projection):
get_start_end_points_sr(image, max_transition_index)
# most_freq_vertical = most_frequent(vertical_projection)
# flag = 0
# h, w= image.shape
# separation_regions = []
# for j in range(w):
# sr = [-1, -1, -1]
# if image[max_transition_index, j] == 255 and flag == 0:
# sr[1] = j #set the end index of the current sr
# flag = 1
# elif image[max_transition_index, j] != 255 and flag == 1:
# sr[0] = j# set the start
# middle_index = (sr[0] + sr[1]) // 2
# vp = vertical_projection[sr[0]:sr[1]]
# if 0 in vp:
# temp = [i for i, e in enumerate(vp) if e == 0]
# min_distance_index = min(temp, key= lambda x:abs(x-middle_index))
# sr[2] = min_distance_index #line 17
# if vertical_projection[middle_index] == most_freq_vertical:
# sr[2] = middle_index
# if any (y <= most_freq_vertical for y in vp):
# emp = [i for i, e in enumerate(vp) if e <= most_freq_vertical]
# min_distance_index = min(temp, key= lambda x:abs(x-middle_index))
# sr[2] = min_distance_index #25
# else:
# sr[2] = middle_index
# separation_regions.append(sr)
# flag = 0
# print("sr: ", separation_regions, sep='\n')
def segment_character(image):
pen_size = get_pen_size(image)
vertical_projection = get_vertical_projection(image)
positions = np.where(vertical_projection == pen_size)
print("pen size is: ", pen_size)
print("positions is: ", positions[0], sep='\n')
positions = positions[0]
count = 0
consective = False
length_consective = []
point_positions = []
for i in range(1, len(positions)):
if not consective:
if positions[i - 1] + 1 == positions[i]:
count = 1
consective = True
else:
if positions[i - 1] + 1 != positions[i]:
consective = False
if (count > (pen_size / 255) * 0.4):
length_consective.append(count + 1)
point_positions.append(i)
else:
count += 1
print("point positions is", point_positions)
print("length_consective is", length_consective)
print("postions is: ", positions)
segmenataion_points = []
for i in range(len(length_consective)):
temp = positions[point_positions[i] - length_consective[i]:point_positions[i]]
print("final point positions", temp)
if len(temp) != 0:
segmenataion_points.append(ceil(sum(temp) / len(temp)))
print("final seg points", segmenataion_points)
(h, w) = image.shape
# for i in segmenataion_points:
# cv2.line(image, (i, 0), (i, h), (255, 255, 255), 1)
# cv2.line(image, (segmenataion_points[-1], 0), (segmenataion_points[-1], h), (255, 255, 255), 1)
display_image("char seg", image)
def template_match(image, path, threshold):
template = cv2.imread(path, cv2.COLOR_BGR2GRAY)
template = convert_to_binary_and_invert(template)
if (image.shape[0] < template.shape[0] or image.shape[1] < template.shape[1]):
return [], 0
img = image.copy()
w, h = template.shape[::-1]
res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)
loc = np.where(res >= threshold)
points = []
for pt in zip(*loc[::-1]):
if (len(points) > 0):
if (pt[0] - points[-1] < template.shape[1]):
continue
# cv2.line(img, (pt[0], 0), (pt[0], img.shape[0]), (255, 255, 255), 1)
# cv2.line(img, (pt[0] + template.shape[1], 0), (pt[0] + template.shape[1], img.shape[0]), (255, 255, 255), 1) # noqa
# cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (255,255,255), 2)
points.append(pt[0])
# display_image('res.png', img)
return points, template.shape[1]
def contour_seg(image, baseline_org):
edged = image.copy()
# final = image.copy()
character_indecies = []
contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = sorted(contours, key=lambda x: cv2.contourArea(x), reverse=True)
vertical_projection = get_vertical_projection(edged)
x, count = 0, 0
is_space = False
xcoords = []
distances = []
for i in range(edged.shape[1]):
if not is_space:
if vertical_projection[i] == 0:
is_space = True
count = 1
x = i
else:
if vertical_projection[i] > 0:
is_space = False
xcoords.append(x / count)
distances.append(count)
else:
x += i
count += 1
xcoords = xcoords[1:]
for cnt in contours:
if (cv2.contourArea(cnt) < 1):
break
image_blank = np.zeros(edged.shape, np.uint8)
img = cv2.drawContours(image_blank, [cnt], 0, (255, 255, 255), 1)
leftmost = tuple(cnt[cnt[:, :, 0].argmin()][0])
character_indecies.append(leftmost[0])
# print("cnt shape", cnt.shape)
img_cnt = np.zeros(edged.shape, np.uint8)
y_points = []
x_points = []
for i in range(0, cnt.shape[0]):
point = (cnt[i][0][0], cnt[i][0][1])
y_points.append(point[1])
x_points.append(point[0])
img_cnt[point[1], point[0]] = image[point[1], point[0]]
cv2.circle(img, point, 1, (255, 0, 0), -1)
baseline = most_frequent(np.asarray(y_points))
seen_points, template_width_seen = template_match(img_cnt, "./patterns/seen_start.png", .7)
# print("seen points", seen_points)
seen_mid_points, template_width_seen_mid = template_match(img_cnt, "./patterns/seen_mid.png", .8)
# print("seen mid points", seen_mid_points)
seen_end_points, template_width_seen_end = template_match(img_cnt, "./patterns/seen_end.png", .75)
# print("seen end points", seen_end_points)
kaf_points, template_width_kaf = template_match(img_cnt, "./patterns/kaf.png", .7)
# print("kaf points", kaf_points)
kaf_end_points, template_width_kaf_end = template_match(img_cnt, "./patterns/kaf_end.png", .65)
# print("kaf end points", kaf_end_points)
fa2_points, template_width_fa2 = template_match(img_cnt, "patterns/fa2.png", .65)
# print("fa2 points", fa2_points)
sad_points, template_width_sad = template_match(img_cnt, "./patterns/sad.png", .75)
# print("sad points", sad_points)
ba2_points, template_width_ba2 = template_match(img_cnt, "./patterns/ba2.png", .7)
# print("ba2 points", ba2_points)
ba2_end_points, template_width_ba2_end = template_match(img_cnt, "./patterns/ba2_end.png", .65)
# print("ba2 end points", ba2_end_points)
ya2_end_points, template_width_ya2_end = template_match(img_cnt, "./patterns/ya2_end.png", .75)
# print("ya2 end points", ya2_end_points)
# ra2_end_points, template_width_ra2_end = template_match(img_cnt, "./patterns/ra2_end.png", .85)
# print("ra2 end points", ra2_end_points)
# dal_end_points, template_width_dal_end = template_match(img_cnt, "./patterns/dal_end.png", .7)
# print("dal end points", dal_end_points)
for point in seen_points:
img_cnt[:, point:point + template_width_seen] = 255
for point in seen_mid_points:
img_cnt[:, point + 3:point + template_width_seen_mid - 5] = 255
for point in seen_end_points:
img_cnt[:, point:point + template_width_seen_end] = 255
for point in kaf_points:
img_cnt[:, point:point + template_width_kaf] = 255
for point in fa2_points:
img_cnt[:, point:point + template_width_fa2] = 255
for point in sad_points:
img_cnt[:, point:point + template_width_sad] = 255
for point in ba2_points:
img_cnt[:, point:point + template_width_ba2] = 255
for point in ba2_end_points:
img_cnt[:, point:point + template_width_ba2_end] = 255
for point in kaf_end_points:
img_cnt[:, point:point + template_width_kaf_end] = 255
for point in ya2_end_points:
character_indecies.append(point + template_width_ya2_end)
count = 0
flag = False
length_consective = []
point_positions = []
for i in range(len(y_points)):
if not flag:
if y_points[i] == baseline or y_points[i] + 1 == baseline or y_points[
i] - 1 == baseline or y_points[i] - 2 == baseline:
count = 1
flag = True
else:
if not (y_points[i] == baseline or y_points[i] + 1 == baseline or y_points[i] - 1 == baseline or y_points[i] - 2 == baseline): # noqa
flag = False
if count > 2:
length_consective.append(count)
point_positions.append(i)
else:
count += 1
sub_x = []
j = 0
segment_points = []
baseline_local = baseline
if abs(baseline - baseline_org) > 2:
baseline_local = baseline_org
for i in point_positions:
sub_x = x_points[i - length_consective[j]:i]
j += 1
canidatate_points = []
for k in range(len(sub_x)):
sub_above = img_cnt[int(baseline_local / 2):baseline_local - 1, sub_x[k]]
sub_below = img_cnt[baseline_local + 2:, sub_x[k]]
if 255 not in sub_above and 255 not in sub_below:
canidatate_points.append(sub_x[k])
if len(canidatate_points) > 0:
segment_points.append(canidatate_points[len(canidatate_points) // 2])
if len(segment_points) < 1:
continue
delete_point = False
segment_points.sort()
for i in range(1, len(segment_points)):
if (img_cnt[:baseline - 1, segment_points[i - 1]:segment_points[i]] == 0).all():
delete_point = True
segment_points[i - 1] = -1
if delete_point:
segment_points.remove(-1)
if len(segment_points) > 1:
next_last_seg_point = segment_points[1]
else:
next_last_seg_point = img_cnt.shape[1]
last_seg_point = segment_points[0]
last_seg_hp = get_horizontal_projection(img_cnt[:baseline, last_seg_point:next_last_seg_point])
first_non_zero_index = (last_seg_hp != 0).argmax(axis=0)[0]
if (first_non_zero_index / last_seg_hp.shape[0]) < 0.85 and (last_seg_hp[first_non_zero_index:] !=0).all() and (img[baseline - 1:baseline + 2, 0:last_seg_point] != 0).any() and (img[0:baseline - 2, 0:last_seg_point] == 0).all() and (img[baseline + 3:,0:last_seg_point] == 0).all(): # noqa
segment_points = segment_points[1:]
# print("this is a dal at the end")
segment_points = list(filter(lambda a: a != -1, segment_points))
character_indecies.extend(segment_points)
character_indecies.extend(xcoords)
# for i in range(len(character_indecies)):
# cv2.line(final, (int(character_indecies[i]), 0), (int(character_indecies[i]), final.shape[0]), (255, 255, 255), 1) # for debugging # noqa
# display_image("final", final)
# cv2.imwrite("wf.png", final)
character_indecies.sort()
return character_indecies