-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_recognition.py
368 lines (301 loc) · 11.4 KB
/
train_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import numpy as np # noqa
import cv2
from utils import display_image # noqa
from integrator import validation_map, augment_with_compsities
def get_largest_connected_component(image):
# image = cv2.erode(image, np.ones((2,2), np.uint8), iterations=1)
# image = cv2.dilate(image, np.ones((2,2), np.uint8), iterations=1)
# image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, np.ones((2,2), np.uint8))
# image = cv2.morphologyEx(image, cv2.MORPH_OPEN, np.ones((2,2), np.uint8))
# display_image("after erode+dilate", image)
number_of_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8)
sizes = stats[:, -1]
max_label = 1
max_size = sizes[1]
for i in range(2, number_of_components):
if sizes[i] > max_size:
max_label = i
max_size = sizes[i]
# print("max label is: ", max_label)
# image2 = np.zeros(output.shape)
# image2[output == max_label] = 255
# image2 = image2.astype(np.uint8)
# display_image("Biggest component", output)
output[output == max_label] = 0
return output, max_label
def remove_dots(image):
# image = cv2.erode(image, np.ones((2,2), np.uint8), iterations=1)
# image = cv2.dilate(image, np.ones((2,2), np.uint8), iterations=1)
# image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, np.ones((2,2), np.uint8))
# image = cv2.morphologyEx(image, cv2.MORPH_OPEN, np.ones((2,2), np.uint8))
# display_image("after erode+dilate", image)
number_of_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8)
sizes = stats[:, -1]
max_label = 1
max_size = sizes[1]
for i in range(2, number_of_components):
if sizes[i] > max_size:
max_label = i
max_size = sizes[i]
# print("max label is: ", max_label)
image2 = np.zeros(output.shape)
image2[output == max_label] = 255
image2 = image2.astype(np.uint8)
# display_image("Biggest component", output)
return image2
def calculate_vertical_transitions(img):
vertical_transitions_bin = np.zeros(img.shape[1])
for i in range(0, img.shape[1]):
for j in range(0, img.shape[0]):
if (j != 0 and img[j][i] != img[j - 1][i]):
vertical_transitions_bin[i] += 1
return vertical_transitions_bin
def calculate_horizonatal_transitions(img):
horz_transitions_bin = np.zeros(img.shape[0])
for i in range(0, img.shape[0]):
for j in range(0, img.shape[1]):
if (j != 0 and img[i][j] != img[i][j - 1]):
horz_transitions_bin[i] += 1
return horz_transitions_bin
def sum_adjancent_values(arr):
curr_val = arr[0]
sum = 0
if (curr_val == 1):
sum += 1
for i in range(0, len(arr)):
if (curr_val == 0 and arr[i] > 0):
sum += 1
curr_val = 1
if (curr_val == 1 and arr[i] <= 0):
curr_val = 0
return sum
def get_interest_points(transitions_columns, transitions_rows, img):
interest_points = []
for i in range(0, transitions_columns.shape[0]):
if (transitions_columns[i] >= 4):
start_row = -1
end_row = -1
for j in range(0, img.shape[0]):
if (j != 0 and img[j][i] != img[j - 1][i]):
if (start_row == -1):
start_row = j
else:
end_row = j
interest_point = (int((start_row + end_row) / 2), i)
if (img[interest_point[0]][interest_point[1]] == 0):
interest_points.append(interest_point)
for i in range(0, transitions_rows.shape[0]):
if (transitions_rows[i] >= 4):
start_col = -1
end_col = -1
for j in range(0, img.shape[1]):
if (j != 0 and img[i][j] != img[i][j - 1]):
if (start_col == -1):
start_col = j
else:
end_col = j
interest_point = (i, int((start_col + end_col) / 2))
if (img[interest_point[0]][interest_point[1]] == 0):
interest_points.append(interest_point)
return interest_points
def label_interest_points(interest_ponts, w, h, img):
labeled_points = []
N = (-1, 0)
S = (-N[0], -N[1])
E = (0, 1)
W = (-E[0], -E[1])
NE = (N[0] + E[0], N[1] + E[1])
NW = (N[0] + W[0], N[1] + W[1])
SE = (S[0] + E[0], S[1] + E[1])
SW = (S[0] + W[0], S[1] + W[1])
directions = [N, S, E, W, NE, NW, SE, SW]
for pt in interest_ponts:
blocked_dirs = []
for dir in directions:
curr_pt = (pt[0] + dir[0], pt[1] + dir[1])
while (h > curr_pt[0] and w > curr_pt[1] and curr_pt[0] >= 0 and curr_pt[1] >= 0):
if (curr_pt in interest_ponts):
# print(f"Point {curr_pt} has been visited by {pt}")
interest_ponts.remove(curr_pt)
if (img[curr_pt[0]][curr_pt[1]] == 255):
blocked_dirs.append(dir)
break
curr_pt = (curr_pt[0] + dir[0], curr_pt[1] + dir[1])
if (len(blocked_dirs) == len(directions)):
if ((pt, 'HOLE') not in labeled_points):
labeled_points.append((pt, 'HOLE'))
else:
label = 'CONC'
if (W not in blocked_dirs):
label = 'L_CONC'
else:
if (W in blocked_dirs and S in blocked_dirs and E in blocked_dirs and (N not in blocked_dirs or NE not in blocked_dirs or NW not in blocked_dirs)): # noqa
label = 'U_CONC'
else:
if (E not in blocked_dirs):
label = 'R_CONIC'
else:
if ((W in blocked_dirs and N in blocked_dirs and E in blocked_dirs and (S not in blocked_dirs or SE not in blocked_dirs or SW not in blocked_dirs))): # noqa
label = 'D_CONIC'
if ((pt, label) not in labeled_points):
labeled_points.append((pt, label))
return labeled_points
def eliminate_extra_padding(img):
horz_sum = np.sum(img, axis=1)
ver_sum = np.sum(img, axis=0)
upper_x = -1
upper_y = -1
lower_x = -1
lower_y = -1
for i in range(0, horz_sum.shape[0]):
if (horz_sum[i] != 0):
if (upper_x == -1):
upper_x = i
else:
lower_x = i
for i in range(0, ver_sum.shape[0]):
if (ver_sum[i] != 0):
if (upper_y == -1):
upper_y = i
else:
lower_y = i
return img[upper_x:lower_x + 1, upper_y:lower_y + 1]
def is_hamza(dots_img):
v_t = calculate_vertical_transitions(dots_img)
if (np.max(v_t) >= 4):
return True
else:
return False
def is_3_dots_connected(dots_img):
h_t = calculate_horizonatal_transitions(dots_img)
if (np.max(h_t) >= 4):
return True
else:
return False
def recognize_dots(char_img):
dots_img, max_label = get_largest_connected_component(char_img)
max_label = max(np.max(dots_img), max_label)
if (max_label == 1):
return -1, 0, 0
if (max_label == 2):
if (is_hamza(dots_img)):
max_label = 5 # hamza label is 4
else:
if (is_3_dots_connected(dots_img)):
max_label = 4
horizontal_sums = np.sum(char_img, axis=1)
char_highest_point = -1
for i in range(0, horizontal_sums.shape[0]):
if (horizontal_sums[i] != 0):
char_highest_point = i
break
dots_horz_sum = np.sum(dots_img, axis=1)
lowest_dots_point = -1
for i in range(0, dots_horz_sum.shape[0]):
if (dots_horz_sum[i] != 0):
lowest_dots_point = i
highest_dots_point = -1
for i in range(0, dots_horz_sum.shape[0]):
if (dots_horz_sum[i] != 0):
highest_dots_point = i
break
if (char_highest_point == highest_dots_point):
return 1, 1, max_label - 1 # upper pos
char_lowest_point = -1
for i in range(0, horizontal_sums.shape[0]):
if (horizontal_sums[i] != 0):
char_lowest_point = i
if (char_lowest_point == lowest_dots_point):
return 3, 1, max_label - 1 # under pos
return 2, 1, max_label - 1 # mid pos
def add_extra_padding(char_img):
hpad = np.zeros((char_img.shape[0], 1))
char_img = np.hstack((char_img, hpad))
char_img = np.hstack((hpad, char_img))
vpad = np.zeros((1, char_img.shape[1]))
char_img = np.vstack((char_img, vpad))
char_img = np.vstack((vpad, char_img))
return char_img
def recognize_char(char_img):
# segmented_char/3een_start.png
img_dotted = char_img.copy()
char_img = add_extra_padding(remove_dots(char_img))
# display_image('no dots', char_img)
horz_transitions = calculate_horizonatal_transitions(char_img)
ver_transitions = calculate_vertical_transitions(char_img)
interest_pts = get_interest_points(ver_transitions, horz_transitions, char_img)
labeled_pts = label_interest_points(interest_pts, char_img.shape[1], char_img.shape[0], char_img)
score = 0
has_hole = 0
for lpt in labeled_pts:
label = lpt[1]
if (label == 'HOLE'):
score += 1
has_hole = 1
if (label == 'L_CONC'):
score += 4
if (label == 'R_CONIC'):
score += 4**2
if (label == 'U_CONC'):
score += 4**3
if (label == 'D_CONIC'):
score += 4**4
if (char_img.shape[1] == 0 or char_img.shape[0] == 0):
return []
char_img = eliminate_extra_padding(img_dotted)
if (char_img.shape[0] * char_img.shape[1] < 2):
return []
try:
form_ratio = char_img.shape[0] / char_img.shape[1]
except Exception:
return []
char_form = -1
if (form_ratio < 0.8):
char_form = 1
if (form_ratio >= 0.8 and form_ratio < 1.2):
char_form = 2
if (form_ratio > 1.2):
char_form = 3
h, w = char_img.shape
try:
corvar = (char_img[0][0] / 255) * 1 + (char_img[0][w - 1] / 255) * 2 + (
char_img[h - 1][w - 1] / 255) * 4 + (char_img[h - 1][0] / 255) * 8 # noqa
except Exception:
return []
pospunc, expunc, numpunc = recognize_dots(img_dotted)
hmax = np.max(horz_transitions)
vmax = np.max(ver_transitions)
if(hmax < 4):
hmax = 0
if(vmax < 4):
vmax = 0
feature_vector = [score, char_form, corvar, expunc, pospunc, numpunc, hmax, vmax, has_hole]
return feature_vector
def validate_segment(fv, text_word, current_char_idx):
validations = validation_map[text_word[current_char_idx]]
is_valid = True
for validate in validations:
if(not validate(fv)):
is_valid = False
break
return is_valid
def batch_get_feat_vectors(word, idxes, text_word):
# text_word = augment_with_compsities(text_word)
idxes.append(word.shape[1] - 1)
feat_vectors = []
last_idx = 0
# curr_char_idx = len(text_word) - 1
for idx in idxes:
idx = int(idx)
last_idx = int(last_idx)
try:
fv = recognize_char(word[:, last_idx:idx])
if(fv != []): # and validate_segment(fv, text_word, curr_char_idx) is True):
feat_vectors.append(fv)
last_idx = idx
# curr_char_idx -= 1
except Exception:
# print(e)
pass
# feat_vectors.append([])
return feat_vectors