-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSAT.py
235 lines (163 loc) · 6.37 KB
/
SAT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import random
from collections import Counter
def readFile(pFileName):
'''
Reads a file with a specific format.
pFileName: txt file in the same directory.
Returns a list of lists with all the clauses that were given
in the file, and the amount of variables found.
File format:
Line 1 - Number of variables.
Line 2 - Number of clauses.
Line 3 -> onward - Clauses
'''
with open(pFileName, "r") as file:
lines = file.readlines()
varAmount = int(lines[0])
clauseAmount = int(lines[1])
lines = lines[2:]
variables = {}
# Checks if the amount of clauses match.
if (clauseAmount != len(lines)):
raise Exception("The amount of clauses given doesn't match the amount of clauses given.")
# Verifies the user input
for i in range(len(lines)):
lines[i] = lines[i].replace("\n", "")
temp = lines[i].replace("-", "")
temp = temp.split(" ")
# Loops through each variable in the clause
for var in temp:
variables[var] = 1
# Raises exception if the amount of variables surpasses the amount given.
if (len(variables) > varAmount):
raise Exception("The amount of variables doesn't match the amount of variables given.")
# Separates each variable
lines[i] = lines[i].split(" ")
return lines, varAmount
def generatePopulation(pSize, pVarAmount):
'''
Generates the population based on the size given by the user.
pSize: Amount of individuals that will be created.
pVarAmount: Amount of distinct variables present in the clauses.
Returns a dictionary of binary numbers that represent the state of
each variable as a key, its value will represent its fitness.
'''
# A dictionary used to avoid duplicates
population = {}
for i in range(pSize):
individual = generateGenes(pVarAmount)
population[individual] = 0
return population
def generateGenes(pVarAmount):
'''
Generates the genes of an individual.
Returns a string of a binary number.
'''
maxNum = (2 ** pVarAmount) - 1
num = random.randint(0, maxNum)
return str(bin(num)).replace("0b", "").zfill(pVarAmount)
def calculateFitness(pPopulation, pClauses):
'''
Calculates the fitness of each individual
for this particular problem.
Returns the dictionary with the updated fitness values.
'''
# Loops through each individual
for individual in pPopulation:
if pPopulation[individual] != 0:
continue
pPopulation[individual] = evaluateIndividual(individual, pClauses)
return pPopulation
def evaluateIndividual(pIndividual, pClauses):
'''
Evaluates the fitness of a specific individual.
'''
fitness = 0
for clause in pClauses:
condition = False
for variable in clause:
value = int(variable)
if value > 0:
condition = bool(int(pIndividual[value - 1]))
else:
condition = not bool(int(pIndividual[(value + 1) * -1]))
# The clause turns out to be true
if condition:
fitness += 1
break
return fitness / len(pClauses)
def crossOver(pPopulation):
'''
Crosses the best two genes and adds them to the population.
'''
if (len(pPopulation) == 1):
return pPopulation
selection = [wheelSelection(pPopulation), wheelSelection(pPopulation)]
crossoverPoint = random.randint(1, len(selection[0])) - 1
newGene = ""
newGene += selection[0][:crossoverPoint]
newGene += selection[1][crossoverPoint:]
if newGene not in pPopulation:
pPopulation[newGene] = 0
return pPopulation
def wheelSelection(pPopulation):
'''
Makes a weighted random selection.
'''
maxVal = sum(pPopulation.values())
randomPick = random.uniform(0, maxVal)
current = 0
for key, value in pPopulation.items():
current += value
if current > randomPick:
return key
def mutate(pPopulation, pProbability):
'''
Mutates genes and adds them to the population.
'''
tempPopulation = {}
for gen in pPopulation:
newGene = ''
for char in gen:
if random.randint(1,100) <= pProbability:
if not int(char):
newGene += "1"
else:
newGene += "0"
else:
newGene += char
if newGene not in pPopulation and len(newGene) != 0:
tempPopulation[newGene] = 0
return {**pPopulation, **tempPopulation}
def logInput(pPopulationSize, pGenAmount, pMutationRatio):
'''
Writes the user input into the results file.
'''
message = " --- USER INPUT --- \n"
message += "Initial population size: " + str(pPopulationSize) + "\n"
message += "Amount of generations: " + str(pGenAmount) + "\n"
message += "Mutation ratio: " + str(pMutationRatio) + "%\n"
with open("Results.txt", "w") as file:
file.write(message)
def logGeneration(pPopulation, pGen):
'''
Logs the information of each generation
'''
message = "\n--- GENERATION " + str(pGen) + " ---\n"
message += "AMOUNT OF GENES: " + str(len(pPopulation)) + "\n\n"
for individual in Counter(pPopulation).most_common():
message += "GENE: " + individual[0] + " FITNESS: " + str(individual[1]) + "\n"
with open("Results.txt", "a") as file:
file.write(message)
if __name__ == '__main__':
file = input("Type the name of the file: \n")
clauses, varAmount = readFile(file)
populationSize = int(input("Type the size of the population: \n"))
generations = int(input("Type the amount of generations: \n"))
mutationRatio = int(input("Type the mutation ratio (Between 0 and 100): \n"))
logInput(populationSize, generations, mutationRatio)
population = generatePopulation(populationSize, varAmount)
for i in range(generations):
population = calculateFitness(population, clauses)
logGeneration(population, i)
population = mutate(crossOver(population), mutationRatio)