-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
302 lines (277 loc) · 9.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import pandas as pd
import numpy as np
from bigg.utils import *
import pickle
import cobra
# modelseed_to_bigg = {
# 'cpd00001_e': 'h2o_e',
# 'cpd00035_e': 'o2_e',
# 'cpd00041_e': 'co2_e',
# 'cpd00023_e': 'glc__D_e',
# 'cpd00119_e': 'nh4_e',
# 'cpd00107_e': 'pi_e',
# 'cpd00060_e': 'so4_e',
# 'cpd00161_e': 'k_e',
# 'cpd00069_e': 'fe2_e',
# 'cpd00084_e': 'h_e',
# 'cpd00033_e': 'ac_e',
# 'cpd00322_e': 'cl_e',
# 'cpd00066_e': 'mg2_e',
# 'cpd00054_e': 'na1_e',
# 'cpd00065_e': 'ca2_e',
# 'cpd00156_e': 'cu2_e',
# 'cpd00220_e': 'mn2_e',
# 'cpd00644_e': 'zn2_e',
# 'cpd00393_e': 'cobalt2_e',
# 'cpd00133_e': 'ni2_e',
# 'cpd00263_e': 'mobd_e',
# 'cpd00104_e': 'trp__L_e',
# 'cpd00149_e': 'his__L_e',
# 'cpd00971_e': 'gly_e',
# 'cpd00099_e': 'ala__L_e',
# 'cpd00205_e': 'ser__L_e',
# 'cpd00009_e': 'nad_e',
# 'cpd00063_e': 'asp__L_e',
# 'cpd00254_e': 'glu__L_e',
# 'cpd10515_e': 'phe__L_e',
# 'cpd00030_e': 'arg__L_e',
# 'cpd00242_e': 'leu__L_e',
# 'cpd00226_e': 'ile__L_e',
# 'cpd01242_e': 'val__L_e',
# 'cpd00307_e': 'thr__L_e',
# 'cpd00092_e': 'lys__L_e',
# 'cpd00117_e': 'met__L_e',
# 'cpd00067_e': 'pro__L_e',
# 'cpd00567_e': 'cys__L_e',
# 'cpd00132_e': 'asn__L_e',
# 'cpd00210_e': 'gln__L_e',
# 'cpd00320_e': 'tyr__L_e',
# 'cpd03279_e': 'orn_e',
# 'cpd00246_e': 'tryptamine_e',
# 'cpd00311_e': 'pyr_e',
# 'cpd00051_e':
# 'cpd00367_e': 'glycine_e',
# 'cpd00277_e': 'phenylalanine_e',
# 'cpd00182_e': 'oxaloacetate_e',
# 'cpd00654_e': 'oxalate_e',
# 'cpd00412_e': 'fumarate_e',
# 'cpd00438_e': 'succinate_e',
# 'cpd00274_e': 'malate_e',
# 'cpd00186_e': 'citrate_e',
# 'cpd00637_e': 'lactate_e',
# 'cpd00105_e': 'aspartate_e',
# 'cpd00305_e': 'alpha_KG_e',
# 'cpd00309_e': 'pyruvate_e',
# 'cpd00098_e': 'glutamate_e',
# 'cpd00207_e': 'glutamine_e',
# 'cpd00082_e': 'formate_e',
# 'cpd00129_e': 'succ_e'
# }
def read_fasta(fasta_file):
seq=''
names =[]
seqs = []
with open(fasta_file, 'r') as inFile:
for line in inFile:
if line.startswith('>'):
name = line.strip('\n').split('>')[1]
# try:
# name = line.strip('\n').split('[gene=')[1].split(']')[0]
# except IndexError:
# name = line.strip('\n').split('[locus_tag=')[1].split(']')[0]
names.append(name)
if seq == '':
continue
else:
seqs.append(seq)
seq = ''
else:
seq = seq + line.strip('\n')
seqs.append(seq)
return names,seqs
def read_clean(input_file):
threrhold = 0.8
print('threrhold-->',threrhold)
pr2ec = {}
with open(input_file, 'r') as inFile:
for line in inFile:
line = line.split()
pr = line[0]
items = line[-1].split(',')
for item in items:
if item.startswith('EC:'):
ec,dis = item.split('/')
ecid = ec.split(':')[-1]
dis= float(dis)
if dis >= threrhold:
try:
pr2ec[pr].append(ecid)
except KeyError:
pr2ec[pr] = [ecid]
print('pr2ec-protein number->',len(list(pr2ec.keys())))
def read_clean_withscore(input_file,threshold=0.8):
print('threrhold-->',threshold)
pr2ec = {}
predscore = {}
with open(input_file, 'r') as inFile:
for line in inFile:
line = line.strip('\n')
line = line.split(',')
pr = line[0]
# items = line[-1].split(',')
items = line[1:]
for item in items:
if item.startswith('EC:'):
ec,dis = item.split('/')
# ecid = ec.split(':')[-1]
ecid = ec
dis = float(dis)
if dis >= 0.0001:
try:
predscore[pr].update({ecid:dis})
except:
predscore[pr] = {ecid:dis}
if dis >= threshold:
try:
pr2ec[pr].append(ecid)
# predscore[pr].update({ecid:dis})
except KeyError:
pr2ec[pr] = [ecid]
# predscore[pr] = {ecid:dis}
print('pr2ec-protein number->',len(list(pr2ec.keys())))
return pr2ec,predscore
# # generate biggr2ec
# reactionf = '/ibex/user/niuk0a/funcarve/cobra/bigg/bigg_models_reactions.txt'
# reactions = pd.read_csv(reactionf, sep='\t')
# ecs = []
# for link in list(reactions.database_links.values):
# link = database_links_reformat(link)
# ids, rhea_ids, mnxs, seeds, biocyc, ec, keggr = links_to_id(link)
# ecs.append(ec)
# biggr2ec = {}
# biggec2r = {}
# for index, row in reactions.iterrows():
# id = row['bigg_id']
# oldid = row['old_bigg_ids']
# ec = ecs[index]
# for eitem in ec :
# try:
# biggec2r[eitem].append(id)
# if '; ' in oldid:
# oids = oldid.split('; ')
# for oid in oids:
# biggec2r[eitem].append(oid)
# else:
# biggec2r[eitem].append(oldid)
# except:
# biggec2r[eitem] = [id]
# if '; ' in oldid:
# oids = oldid.split('; ')
# biggec2r[eitem] = oids
# else:
# biggec2r[eitem] = [oldid]
# try:
# biggr2ec[id] += ec
# if '; ' in oldid:
# oids = oldid.split('; ')
# for oid in oids:
# biggr2ec[oid] += ec
# else:
# biggr2ec[oldid] += ec
# except:
# biggr2ec[id] = ec
# if '; ' in oldid:
# oids = oldid.split('; ')
# for oid in oids:
# biggr2ec[oid] = ec
# else:
# biggr2ec[oldid] = ec
# #save biggr2ec
# # Save biggr2ec dictionary to a file
# with open('biggr2ec.pkl', 'wb') as f:
# pickle.dump(biggr2ec, f)
# with open('biggec2r.pkl', 'wb') as f:
# pickle.dump(biggec2r, f)
# print("biggr2ec dictionary saved successfully.")
# Load biggr2ec dictionary from the file
with open('biggr2ec.pkl', 'rb') as f:
biggr2ec = pickle.load(f)
with open('biggec2r.pkl', 'rb') as f:
biggec2r = pickle.load(f)
print("biggr2ec dictionary loaded successfully.")
def clean2biggr(predscore):
# print('universal',universal)
universal_scoredict={}
# u_rx = [r.id for r in universal.reactions]
for pr, ec_score in predscore.items():
for ec , score in ec_score.items():
if ec in biggec2r.keys():
rids = biggec2r[ec]
# if len(rids) >1:
# print('rids:',rids)
for rid in rids:
# print('rid:',rid)
try:
universal_scoredict[rid].append(score)
except:
universal_scoredict[rid] = score
return universal_scoredict
def clean_to_rxns(pr2ec,r2ecf,pr2gene,gene_modelseed,organism):
# loose =True
loose = False
ecf = pd.read_csv(r2ecf, sep='\t')
print('done read ecf',flush=True)
if loose:
allshort = set()
for ec in ecf['External ID'].values:
if '.-' in ec and ec.count('-') <= 2:
allshort.add(ec)
def check(ecid,allshort):
ecid1 = ecid.split('.')[:-1]
ecid1 = '.'.join(ecid1)+'.-'
ecid2 = ecid.split('.')[:-2]
ecid2 = '.'.join(ecid2)+'.-.-'
if ecid1 in allshort:
return True,ecid1
elif ecid2 in allshort:
return True,ecid2
else:
return False,0
print('if loose is true, we will add the loose reactions,loose=',loose,flush=True)
# if org != 'default':
# new_hits = _get_org_rxns(gene_modelseed, organism)
# gene_count = len(new_hits)
# print('Added', gene_count, 'genes from', organism,flush=True)
rxn_p = {}
print('using origianl enzyme to reaction mapping')
for pr in pr2ec.keys():
ecs = pr2ec[pr]
# gene = pr
# try:
# gene = pr2gene[pr]
# except KeyError:
# continue
# try:
# rxns = gene_modelseed[gene]
# except KeyError:
# continue
for ecid in ecs:
rs = ecf.loc[(ecf['External ID'] == ecid), 'ModelSEED ID'].values.tolist()
if loose:
f,cutid =check(ecid,allshort)
if f:
loose_rxns = ecf.loc[(ecf['External ID'] == cutid), 'ModelSEED ID'].values.tolist()
rs = rs + loose_rxns
rs = list(set(rs))
else:
rs = list(set(rs))
for r in rs:
r = r + '_c'
try:
rxn_p[r].append(pr)
except KeyError:
rxn_p[r] = [pr]
for r in rxn_p.keys():
rxn_p[r] = list(set(rxn_p[r]))
print('rxn_p rxn number:',len(list(rxn_p.keys())),flush=True)
return rxn_p