forked from chunyuma/KGML-xDTD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_model_training.sh
226 lines (200 loc) · 13.2 KB
/
2_model_training.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/usr/bin/env bash
## set working directory
work_folder=$(pwd)
############## set up global parameters ##############
## set up neo4j info
export neo4j_username='neo4j'
export neo4j_password='neo4j' ## if this password doesn't work, please refer to https://neo4j.com/docs/operations-manual/current/configuration/set-initial-password/ to set up a new password
export neo4j_bolt='bolt://localhost:7687'
## For an alternative method, you can copy and paste the above lines into ~/.profile file on your linux machine
## set up hyperparameters for drug repurposing model training
pair_emb_method='concatenate'
## set up hyperparameters for ADAC-based RL model training
max_path=3
state_history=2
max_neighbor=3000
bucket_interval=50
gpu=0
pre_batch_size=1024
max_pre_path=10000000
num_epochs=100
entropy_weight=0.005
learning_rate=0.0005
action_dropout=0.5
num_rollouts=35
train_batch_size=1120
eval_batch_size=5
factor=0.9
######################################################
## create required folders
if [ ! -d "${work_folder}/data" ]
then:
mkdir ${work_folder}/data
fi
if [ ! -d "${work_folder}/log_folder" ]
then
mkdir ${work_folder}/log_folder
fi
if [ ! -d "${work_folder}/models" ]
then
mkdir ${work_folder}/models
fi
if [ ! -d "${work_folder}/results" ]
then
mkdir ${work_folder}/results
fi
## move training data to data folder
if [ ! -d "${work_folder}/data/training_data" ]
then
mv ${work_folder}/training_data.tar.gz ${work_folder}/data
cd ${work_folder}/data
tar zxvf training_data.tar.gz
rm training_data.tar.gz
cd ${work_folder}
fi
if [ ! -f "${work_folder}/data/indication_paths.yaml" ]
then
mv ${work_folder}/indication_paths.yaml ${work_folder}/data
fi
## set up node synonymizer
if [ ! -f "${work_folder}/scripts/node_synonymizer_v1.0_KG2.7.3.sqlite" ]
then
cd ${work_folder}/scripts
ln -s ${work_folder}/bkg_rtxkg2c_v2.7.3/relevant_dbs/node_synonymizer_v1.0_KG2.7.3.sqlite
cd ${work_folder}
fi
## step5: generate node-attribute embedding via PubMedBert model
python ${work_folder}/scripts/calculate_attribute_embedding.py --log_dir ${work_folder}/log_folder \
--log_name step5.log \
--data_dir ${work_folder}/data \
--use_gpu \
--gpu ${gpu} \
--output_folder ${work_folder}/data
# step6: generate graphsage input files
echo 'running step6: generate graphsage input files'
python ${work_folder}/scripts/graphsage_data_generation.py --log_dir ${work_folder}/log_folder \
--log_name step6_1.log \
--data_dir ${work_folder}/data \
--emb_file ${work_folder}/data/text_embedding/embedding_biobert_namecat.pkl \
--process 80 \ ## change it based on your computer CPU cores
--validation_percent 0.3 \
--output_folder ${work_folder}/data/graphsage_input
python ${work_folder}/scripts/generate_random_walk.py --log_dir ${work_folder}/log_folder \
--log_name step6_2.log \
--Gjson ${work_folder}/data/graphsage_input/data-G.json \
--walk_length 100 \
--number_of_walks 10 \
--batch_size 200000 \
--process 200 \ ## change it based on your computer CPU cores
--output_folder ${work_folder}/data/graphsage_input
# ## step7: generate graphsage embedding
echo 'running step7: generate graphsage embedding'
## set graphsage folder
## in the original source code of GraphSAGE (if you download from https://github.com/williamleif/GraphSAGE), remember to set the parameter 'normalize' of load_data function to false and 'load_walks' to True
## set python path (Please use python 2.7 to run graphsage as graphsage was written by python2.7)
ppath=~/anaconda3/envs/graphsage_p2.7env/bin/python ## please change this path to where the python located in "graphsage_p2.7env" conda environment
ln -s ${work_folder}/scripts/GraphSAGE/graphsage
## run graphsage unsupervised model
${ppath} -m graphsage.unsupervised_train --train_prefix ${work_folder}/data/graphsage_input/data \
--model_size 'big' \
--learning_rate 0.001 \
--epochs 10 \
--samples_1 96 \
--samples_2 96 \
--dim_1 256 \
--dim_2 256 \
--model 'graphsage_mean' \
--max_total_steps 10000 \
--validate_iter 100 \
--batch_size 512 \
--max_degree 96
## step7: transform the GraphSage results to .emb format
echo 'running step7: transform the GraphSage results to .emb format'
python ${work_folder}/scripts/transform_format.py --log_dir ${work_folder}/log_folder \
--log_name step7.log \
--data_dir ${work_folder}/data \
--input ${work_folder}/unsup-graphsage_input/graphsage_mean_big_0.001000
## step8: pretrain RF model
echo 'running step8: pretrain RF model'
python ${work_folder}/scripts/run_RF_model_2class.py --log_dir ${work_folder}/log_folder \
--log_name step8_rf_2class.log \
--data_dir ${work_folder}/data \
--pair_emb ${pair_emb_method} \
--output_folder ${work_folder}/models
python ${work_folder}/scripts/run_RF_model_3class.py --log_dir ${work_folder}/log_folder \
--log_name step8_rf_3class.log \
--data_dir ${work_folder}/data \
--pair_emb ${pair_emb_method} \
--output_folder ${work_folder}/models
python ${work_folder}/scripts/run_logistic_model_2class.py --log_dir ${work_folder}/log_folder \
--log_name step8_logistic_2class.log \
--data_dir ${work_folder}/data \
--pair_emb ${pair_emb_method} \
--output_folder ${work_folder}/models
python ${work_folder}/scripts/run_svm_model_2class.py --log_dir ${work_folder}/log_folder \
--log_name step8_svm_2class.log \
--data_dir ${work_folder}/data \
--pair_emb ${pair_emb_method} \
--output_folder ${work_folder}/models
# step9: generate pre-calculated transition file for demonstration paths
echo 'running step9: generate precalculated transition file for demonstration paths'
python ${work_folder}/scripts/generate_expert_trans.py --log_dir ${work_folder}/log_folder \
--log_name step9.log \
--data_dir ${work_folder}/data \
--path_file_name 'train_expert_demonstration_relation_entity_max'${max_path}'_filtered.pkl' \
--max_path ${max_path} \
--state_history ${state_history} \
--expert_trains_file_name 'train_expert_transitions_history'${state_history}'.pkl'
# step10: pretrained ActorCritic model by the behavior cloning
echo 'running step10: pretrained ActorCritic model by the behavior cloning'
python ${work_folder}/scripts/run_pretrain_ac_model.py --log_dir ${work_folder}/log_folder \
--log_name step10.log \
--data_dir ${work_folder}/data \
--path_file_name 'train_expert_demonstration_relation_entity_max'${max_path}'_filtered.pkl' \
--text_emb_file_name 'embedding_biobert_namecat.pkl' \
--output_folder ${work_folder}/models \
--max_path ${max_path} \
--bandwidth ${max_neighbor} \
--bucket_interval ${bucket_interval} \
--pretrain_model_path ${work_folder}/models/RF_model_3class/RF_model.pt \
--use_gpu \
--gpu ${gpu} \
--batch_size ${pre_batch_size} \
--max_pre_path ${max_pre_path} \
--epochs 20 \
--pre_actor_epoch 10 \
--hidden 512 512 \
--state_history ${state_history} \
--lr ${learning_rate} \
--scheduler_patience 5 \
--scheduler_factor 0.1
# step11: train Adversarial ActorCritic model
echo 'running step11: train Adversarial ActorCritic model'
python ${work_folder}/scripts/run_adac_model.py --log_dir ${work_folder}/log_folder \
--log_name step11.log \
--data_dir ${work_folder}/data \
--path_file_name 'train_expert_demonstration_relation_entity_max'${max_path}'_filtered.pkl' \
--text_emb_file_name 'embedding_biobert_namecat.pkl' \
--path_trans_file_name 'train_expert_transitions_history2.pkl' \
--output_folder ${work_folder}/models \
--max_path ${max_path} \
--bandwidth ${max_neighbor} \
--bucket_interval ${bucket_interval} \
--pretrain_model_path ${work_folder}/models/RF_model_3class/RF_model.pt \
--use_gpu --gpu ${gpu} --train_batch_size ${train_batch_size} \
--warmup --pre_ac_file 'pre_model_epoch20.pt' \
--disc_hidden 512 512 \
--metadisc_hidden 512 256 \
--ac_hidden 512 512 \
--epochs ${num_epochs} \
--state_history ${state_history} \
--ac_update_delay 50 \
--ent_weight ${entropy_weight} \
--disc_alpha 0.006 \
--metadisc_alpha 0.012 \
--num_rollouts ${num_rollouts} \
--act_dropout ${action_dropout} \
--ac_lr ${learning_rate} \
--disc_lr ${learning_rate} \
--metadisc_lr ${learning_rate}
# Note that some baseline models are impletmented independently, please go to ./baselines folder to find the specific baseline models that we compare in our paper. Under each baseline model folder, there is a "main.sh" file. Please follow the steps within "main.sh" file to implement such baseline model.