-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
41 lines (30 loc) · 1.17 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from flask import Flask,request,render_template,jsonify
from src.pipelines.prediction_pipeline import CustomData,PredictPipeline
application=Flask(__name__)
app=application
@app.route('/')
def home_page():
return render_template('index.html')
@app.route('/predict',methods=['GET','POST'])
def predict_datapoint():
if request.method=='GET':
return render_template('form.html')
else:
data=CustomData(
carat=float(request.form.get('carat')),
depth = float(request.form.get('depth')),
table = float(request.form.get('table')),
x = float(request.form.get('x')),
y = float(request.form.get('y')),
z = float(request.form.get('z')),
cut = request.form.get('cut'),
color= request.form.get('color'),
clarity = request.form.get('clarity')
)
final_new_data=data.get_data_as_dataframe()
predict_pipeline=PredictPipeline()
pred=predict_pipeline.predict(final_new_data)
results=round(pred[0],2)
return render_template('form.html',final_result=results)
if __name__=="__main__":
app.run(host='0.0.0.0',debug=True)