-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhalofit_ppf.f90
335 lines (273 loc) · 11.7 KB
/
halofit_ppf.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! The `halofit' code models the nonlinear evolution of cold matter
! cosmological power spectra. The full details of the way in which
! this is done are presented in Smith et al. (2002), MNRAS, ?, ?.
!
! The code `halofit' was written by R. E. Smith & J. A. Peacock.
! See http://www.astro.upenn.edu/~res,
!
! Subsequent updates as below
! Only tested for basic models with power law initial power spectra
! Adapted for F90 and CAMB, AL March 2005
!!BR09 Oct 09: generalized expressions for om(z) and ol(z) to include w
! RT12 Oct: update some fitting parameters in the code to enhance
! the power spectrum at small scales (arXiv:1208.2701)
!!JD 08/13: generalized expressions for om(z) and ol(z) to include
! w_0 and w_a
! SPB14 Feb: update the fitting parameters for neutrinos to work with RT12
! modifications
! AL Sept 14: added halofit_version parameter to change approximation used;
! separate halofit.f90 is no longer needed as equations.f90 defined fixed wa_ppf
! Jan 15: Suggested change from Simeon Bird to avoid issues with very large Omm and neutrinos
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
module NonLinear
use ModelParams
use transfer
use LambdaGeneral
implicit none
private
real, parameter :: Min_kh_nonlinear = 0.005
real(dl):: om_m,om_v,fnu,omm0, acur
integer, parameter :: halofit_original = 1, halofit_bird=2, halofit_peacock=3, halofit_takahashi=4
integer, parameter :: halofit_default = halofit_original ! DM15: Takahashi is not stable for axion models. Other versions agree well and are sensible to percent level for lensing \ell<4000.
integer :: halofit_version = halofit_default
public Min_kh_nonlinear,NonLinear_GetNonLinRatios, NonLinear_ReadParams
public halofit_version,halofit_default, halofit_original, halofit_bird, halofit_peacock, halofit_takahashi
contains
subroutine NonLinear_ReadParams(Ini)
use IniFile
Type(TIniFile) :: Ini
halofit_version = Ini_Read_Int_File(Ini, 'halofit_version', halofit_default)
end subroutine NonLinear_ReadParams
subroutine NonLinear_GetNonLinRatios(CAMB_Pk)
!Fill the CAMB_Pk%nonlin_scaling array with sqrt(non-linear power/linear power)
!for each redshift and wavenumber
!This implementation uses Halofit
type(MatterPowerData) :: CAMB_Pk
integer itf
real(dl) a,plin,pq,ph,pnl,rk
real(dl) sig,rknl,rneff,rncur,d1,d2
real(dl) diff,xlogr1,xlogr2,rmid
integer i
!!BR09 putting neutrinos into the matter as well, not sure if this is correct, but at least one will get a consisent omk.
!! DM16: modification to treat axions in non-linear lensing S4 fiducial model.
! Axion mass kluge: include in computation on non-linear ratio only
! for masses that are non-linear at z>2.
! Otherwise they are treated as quintessence, i.e. ignored in this.
! Boundary found by hand for fiducial "test field" approximation,
! valid for low axion density.
! Make sure to set the same boundary mass, 1.e-25 eV, in subroutine outtransf.
if (CP%ma.ge.1.e-25) then
omm0 = CP%omegac+CP%omegab+CP%omegan+CP%omegaax
else
omm0 = CP%omegac+CP%omegab+CP%omegan
end if
fnu = CP%omegan/omm0
CAMB_Pk%nonlin_ratio = 1
do itf = 1, CAMB_Pk%num_z
! calculate nonlinear wavenumber (rknl), effective spectral index (rneff) and
! curvature (rncur) of the power spectrum at the desired redshift, using method
! described in Smith et al (2002).
a = 1/real(1+CAMB_Pk%Redshifts(itf),dl)
om_m = omega_m(a, omm0, CP%omegav, w_lam,wa_ppf)
om_v = omega_v(a, omm0, CP%omegav, w_lam,wa_ppf)
acur = a
xlogr1=-2.0
xlogr2=3.5
do
rmid=(xlogr2+xlogr1)/2.0
rmid=10**rmid
call wint(CAMB_Pk,itf,rmid,sig,d1,d2)
diff=sig-1.0
if (abs(diff).le.0.001) then
rknl=1./rmid
rneff=-3-d1
rncur=-d2
exit
elseif (diff.gt.0.001) then
xlogr1=log10(rmid)
elseif (diff.lt.-0.001) then
xlogr2=log10(rmid)
endif
if (xlogr2 < -1.9999) then
!is still linear, exit
goto 101
else if (xlogr2>3.4999) then
! Totally crazy non-linear
global_error_flag=349
write(*,*) 'Error in halofit'
goto 101
end if
end do
! now calculate power spectra for a logarithmic range of wavenumbers (rk)
do i=1, CAMB_PK%num_k
rk = exp(CAMB_Pk%log_kh(i))
if (rk > Min_kh_nonlinear) then
! linear power spectrum !! Remeber => plin = k^3 * P(k) * constant
! constant = 4*pi*V/(2*pi)^3
plin= MatterPowerData_k(CAMB_PK, rk, itf)*(rk**3/(2*pi**2))
! calculate nonlinear power according to halofit: pnl = pq + ph,
! where pq represents the quasi-linear (halo-halo) power and
! where ph is represents the self-correlation halo term.
call halofit(rk,rneff,rncur,rknl,plin,pnl,pq,ph) ! halo fitting formula
CAMB_Pk%nonlin_ratio(i,itf) = sqrt(pnl/plin)
!write(9,*) rk,plin/(rk**3/(2*pi**2)),pnl/(rk**3/(2*pi**2)) ! DM: write out pnl inside halofit
end if
enddo
101 continue
end do
end subroutine NonLinear_GetNonLinRatios
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subroutine halofit(rk,rn,rncur,rknl,plin,pnl,pq,ph)
implicit none
real(dl) gam,a,b,c,xmu,xnu,alpha,beta,f1,f2,f3
real(dl) rk,rn,plin,pnl,pq,ph,plinaa
real(dl) rknl,y,rncur
real(dl) f1a,f2a,f3a,f1b,f2b,f3b,frac
real(dl) extragam, peacock_fudge
if (halofit_version ==halofit_original .or. halofit_version ==halofit_bird &
.or. halofit_version == halofit_peacock) then
! halo model nonlinear fitting formula as described in
! Appendix C of Smith et al. (2002)
!SPB11: Standard halofit underestimates the power on the smallest scales by a
!factor of two. Add an extra correction from the simulations in Bird, Viel,
!Haehnelt 2011 which partially accounts for this.
if (halofit_version ==halofit_bird) then
extragam = 0.3159 -0.0765*rn -0.8350*rncur
gam=extragam+0.86485+0.2989*rn+0.1631*rncur
else
gam=0.86485+0.2989*rn+0.1631*rncur
end if
a=1.4861+1.83693*rn+1.67618*rn*rn+0.7940*rn*rn*rn+ &
0.1670756*rn*rn*rn*rn-0.620695*rncur
a=10**a
b=10**(0.9463+0.9466*rn+0.3084*rn*rn-0.940*rncur)
c=10**(-0.2807+0.6669*rn+0.3214*rn*rn-0.0793*rncur)
xmu=10**(-3.54419+0.19086*rn)
xnu=10**(0.95897+1.2857*rn)
alpha=1.38848+0.3701*rn-0.1452*rn*rn
beta=0.8291+0.9854*rn+0.3400*rn**2+fnu*(-6.4868+1.4373*rn**2)
elseif (halofit_version == halofit_takahashi) then
!RT12 Oct: the halofit in Smith+ 2003 predicts a smaller power
!than latest N-body simulations at small scales.
!Update the following fitting parameters of gam,a,b,c,xmu,xnu,
!alpha & beta from the simulations in Takahashi+ 2012.
!The improved halofit accurately provide the power spectra for WMAP
!cosmological models with constant w.
gam=0.1971-0.0843*rn+0.8460*rncur
a=1.5222+2.8553*rn+2.3706*rn*rn+0.9903*rn*rn*rn+ &
0.2250*rn*rn*rn*rn-0.6038*rncur+0.1749*om_v*(1.+w_lam+wa_ppf*(1-acur))
a=10**a
b=10**(-0.5642+0.5864*rn+0.5716*rn*rn-1.5474*rncur+ &
0.2279*om_v*(1.+w_lam+wa_ppf*(1-acur)))
c=10**(0.3698+2.0404*rn+0.8161*rn*rn+0.5869*rncur)
xmu=0.
xnu=10**(5.2105+3.6902*rn)
alpha=abs(6.0835+1.3373*rn-0.1959*rn*rn-5.5274*rncur)
beta=2.0379-0.7354*rn+0.3157*rn**2+1.2490*rn**3+ &
0.3980*rn**4-0.1682*rncur + fnu*(1.081 + 0.395*rn**2)
else
stop 'Unknown halofit_version'
end if
if(abs(1-om_m).gt.0.01) then ! omega evolution
f1a=om_m**(-0.0732)
f2a=om_m**(-0.1423)
f3a=om_m**(0.0725)
f1b=om_m**(-0.0307)
f2b=om_m**(-0.0585)
f3b=om_m**(0.0743)
frac=om_v/(1.-om_m)
f1=frac*f1b + (1-frac)*f1a
f2=frac*f2b + (1-frac)*f2a
f3=frac*f3b + (1-frac)*f3a
else
f1=1.0
f2=1.
f3=1.
endif
y=(rk/rknl)
ph=a*y**(f1*3)/(1+b*y**(f2)+(f3*c*y)**(3-gam))
ph=ph/(1+xmu*y**(-1)+xnu*y**(-2))*(1+fnu*0.977)
plinaa=plin*(1+fnu*47.48*rk**2/(1+1.5*rk**2))
pq=plin*(1+plinaa)**beta/(1+plinaa*alpha)*exp(-y/4.0-y**2/8.0)
pnl=pq+ph
if (halofit_version == halofit_peacock) then
!From http://www.roe.ac.uk/~jap/haloes/
!(P-P_linear) -> (P-P_linear) * (1+2y^2)/(1+y^2), where y = k/10 h Mpc^(-1).
peacock_fudge = rk/10
pnl = plin + (pnl-plin)*(1+2*peacock_fudge**2)/(1+peacock_fudge**2)
end if
end subroutine halofit
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! The subroutine wint, finds the effective spectral quantities
! rknl, rneff & rncur. This it does by calculating the radius of
! the Gaussian filter at which the variance is unity = rknl.
! rneff is defined as the first derivative of the variance, calculated
! at the nonlinear wavenumber and similarly the rncur is the second
! derivative at the nonlinear wavenumber.
subroutine wint(CAMB_Pk,itf,r,sig,d1,d2)
implicit none
integer, intent(in) :: itf
type(MatterPowerData) :: CAMB_Pk
real(dl) sum1,sum2,sum3,t,y,x,w1,w2,w3
real(dl) x2,rk, fac,r, sig, d1,d2, anorm
integer i,nint
nint=3000
sum1=0.d0
sum2=0.d0
sum3=0.d0
anorm = 1/(2*pi**2)
do i=1,nint
t=(i-0.5_dl)/nint
y=-1.d0+1.d0/t
rk=y
d2=MatterPowerData_k(CAMB_PK, rk, itf)*(rk**3*anorm)
x=y*r
x2=x*x
w1=exp(-x2)
w2=2*x2*w1
w3=4*x2*(1-x2)*w1
fac=d2/y/t/t
sum1=sum1+w1*fac
sum2=sum2+w2*fac
sum3=sum3+w3*fac
enddo
sum1=sum1/nint
sum2=sum2/nint
sum3=sum3/nint
sig=sqrt(sum1)
d1=-sum2/sum1
d2=-sum2*sum2/sum1/sum1 - sum3/sum1
end subroutine wint
!!JD 08/13 generalize to variable w
function omega_m(aa,om_m0,om_v0,wval,waval)
implicit none
real(dl) omega_m,omega_t,om_m0,om_v0,aa,wval,waval,Qa2
Qa2= aa**(-1.0-3.0*(wval+waval))*dexp(-3.0*(1-aa)*waval)
omega_t=1.0+(om_m0+om_v0-1.0)/(1-om_m0-om_v0+om_v0*Qa2+om_m0/aa)
omega_m=omega_t*om_m0/(om_m0+om_v0*aa*Qa2)
end function omega_m
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! evolution of omega lambda with expansion factor
function omega_v(aa,om_m0,om_v0,wval,waval)
implicit none
real(dl) aa,omega_v,om_m0,om_v0,omega_t,wval,waval,Qa2
Qa2= aa**(-1.0-3.0*(wval+waval))*dexp(-3.0*(1-aa)*waval)
omega_t=1.0+(om_m0+om_v0-1.0)/(1-om_m0-om_v0+om_v0*Qa2+om_m0/aa)
omega_v=omega_t*om_v0*Qa2/(om_v0*Qa2+om_m0/aa)
end function omega_v
!!JD end generalize to variable w
end module NonLinear
!workaround for f90 circular-module reference
subroutine NonLinear_GetRatios(CAMB_Pk)
use Transfer
use NonLinear
type(MatterPowerData) :: CAMB_Pk
call NonLinear_GetNonLinRatios(CAMB_Pk)
end subroutine NonLinear_GetRatios
subroutine NonLinear_GetRatios_all(CAMB_Pk)
use Transfer
use NonLinear
type(MatterPowerData) :: CAMB_Pk
stop 'Halofit module doesn''t support non-linear velocities'
end subroutine NonLinear_GetRatios_All