-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunwarping_functions.py
190 lines (158 loc) · 5.89 KB
/
unwarping_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import math
def periodize_angle(theta):
result = np.array(theta % (2.0 * np.pi))
idx = result > np.pi
result[idx] -= 2 * np.pi
return result
def dirichlet(w, K):
"""Drichlet kernel
:param w: The argument of the kernel.
:param K: order of the Dirichlet kernel.
:return: The values of the Dirichlet kernel."""
return np.sin(w * (K+0.5)) / np.sin(w/2.)
def dirichlet_inverse(y, K, threshold=0.01):
"""Numerial inverse of the Drichlet kernel
:param y: Value of the kernel.
:param K: order of the Dirichlet kernel.
:param threshold: numerical accuracy of the numerical inverse.
:return: The values of the Dirichlet kernel."""
w_solve = np.linspace(0, np.pi+np.pi/10000, 10000)
y_tmp = np.abs(dirichlet(w_solve, K) - y)
idx = np.argwhere(np.isclose(y_tmp[:-1], np.zeros(y_tmp[:-1].shape), atol=threshold)).reshape(-1)
min_inds = np.array([], dtype=int)
for i in idx:
if y_tmp[i-1] > y_tmp[i] and y_tmp[i] < y_tmp[i+1]:
min_inds = np.hstack((min_inds, i))
result = w_solve[min_inds]
return result
def g_fun(x, a, K):
g_x = np.zeros(len(x)) + 1j * np.zeros(len(x))
k = np.arange(-K, K+1)
for k in range(2*K+1):
g_x = g_x + a[k] * np.exp(1j * 2 * np.pi * (k - K) * x / (2 * K + 1))
return g_x
def estimate_theta(h_n, L, redundancy):
myL = L + 30
N = 2 * myL + 1 + redundancy
D = np.zeros((N - myL, myL))
for i in range(1, myL + 1):
D[:, (i-1)] = h_n[np.arange((myL-i),(N-i))]
d = h_n[np.arange(myL, N)]
aa = np.linalg.lstsq(D, d)[0]
mu = np.roots(np.hstack((1, -aa)))
idx = np.argsort(np.abs(np.abs(mu) - 1))[:L]
mu = mu[idx]
theta_estimated = np.sort(np.angle(mu))
return theta_estimated
def find_s(theta):
s = np.real(np.sum(np.exp(1j * theta)))
return s
def estimate_alpha(s, K, version='new'):
if version == 'new':
def myFun(w_solve):
return dirichlet(w_solve, K) - s
alpha_hat = roots(myFun, 0, np.pi, eps=1e-4)[1:]
elif version == 'old':
w_solve = np.linspace(0, np.pi + np.pi/100000000, 100000000)
g1 = np.abs(dirichlet(w_solve, K) - s)
idx = np.argwhere(np.isclose(g1[:-1], np.zeros(g1[:-1].shape), atol=1e-02)).reshape(-1)
min_inds = np.array([], dtype=int)
for i in idx:
if g1[i-1] > g1[i] and g1[i] < g1[i+1]:
min_inds = np.hstack((min_inds, i))
alpha_hat = w_solve[min_inds]
return alpha_hat
def filter_alpha(alpha_hat, theta_estimated, K, threshold=0.1, atLeastOneSol=False):
if len(alpha_hat) == 0:
return alpha_hat
else:
theta_test = [None] * len(alpha_hat)
for i in range(len(alpha_hat)):
theta_test[i] = np.sort(periodize_angle(np.arange(-K, K + 1) * alpha_hat[i]))
errors = np.array([np.linalg.norm(theta_estimated - np.sort(t_test), 2) for t_test in theta_test])
ind1 = np.argmin(errors)
ind2 = errors <= threshold
if np.sum(ind2) == 0 and atLeastOneSol:
return np.array([alpha_hat[ind1]]).flatten()
else:
return np.array([alpha_hat[ind2]]).flatten()
def estimate_a(b_hat, h_n, K, sample_points):
sampling_matrix = np.zeros((len(sample_points), 2*K+1)) + 1j * np.zeros((len(sample_points), 2*K+1))
for k in range(2*K+1):
sampling_matrix[:, k] = np.exp(1j * 2 * np.pi * (k-K) * b_hat * sample_points / (2*K+1))
a_hat = np.dot(np.linalg.pinv(sampling_matrix), h_n)
return np.real(a_hat)
def estimate_b(alpha_hat, K, T):
b_hat = (2 * K + 1) * alpha_hat / (2 * np.pi * T)
return b_hat
def unwarp(h_n, K, T, sample_points, redundancy, atLeastOneSol=True):
theta_estimated = estimate_theta(h_n, 2*K+1, redundancy)
s = find_s(theta_estimated)
alpha_estimated = estimate_alpha(s, K)
alpha_estimated_filtered = filter_alpha(alpha_hat=alpha_estimated, theta_estimated=theta_estimated, K=K,
atLeastOneSol=atLeastOneSol)
b_estimated = estimate_b(alpha_estimated_filtered, K, T)
if np.size(b_estimated) >= 1:
a_estimated = np.array([estimate_a(b_est, h_n, K, sample_points) for b_est in b_estimated])
else:
a_estimated = np.array([])
return [b_estimated, a_estimated]
def compute_h_n_hat(a_hat, b_hat, K, sample_points):
assert(len(a_hat) == (2*K+1))
result = np.zeros(sample_points.shape) + 1j * np.zeros(sample_points.shape)
for k in range(2*K+1):
result += a_hat[k] * np.exp(1j * 2 * np.pi * (k-K) * b_hat * sample_points / (2*K+1))
return np.real(result)
# taken from here: https://stackoverflow.com/questions/13054758/python-finding-multiple-roots-of-nonlinear-equation
def rootsearch(f, a, b, dx):
x1 = a
f1 = f(a)
x2 = a + dx
f2 = f(x2)
while f1 * f2 > 0.0:
if x1 >= b:
return None,None
x1 = x2
f1 = f2
x2 = x1 + dx
f2 = f(x2)
return x1, x2
def bisect(f, x1, x2, switch=0, epsilon=1.0e-9):
f1 = f(x1)
if f1 == 0.0:
return x1
f2 = f(x2)
if f2 == 0.0:
return x2
if f1 * f2 > 0.0:
print('Root is not bracketed')
return None
n = int(math.ceil(math.log(abs(x2 - x1)/epsilon)/math.log(2.0)))
for i in range(n):
x3 = 0.5 * (x1 + x2)
f3 = f(x3)
if (switch == 1) and (abs(f3) > abs(f1)) and (abs(f3) > abs(f2)):
return None
if f3 == 0.0:
return x3
if f2 * f3 < 0.0:
x1 = x3
f1 = f3
else:
x2 = x3
f2 = f3
return (x1 + x2) / 2.0
def roots(f, a, b, eps=1e-6):
result = []
while 1:
x1, x2 = rootsearch(f, a, b, eps)
if x1 is not None:
a = x2
root = bisect(f,x1,x2,1)
if root is not None:
pass
result.append(root)
else:
break
return np.array(result)