-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathld14p.cpp
332 lines (299 loc) · 9.23 KB
/
ld14p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include "Arduino.h"
#include "ld14p.h"
LiDARMeasureDataType pcdpkg_data_;
LiDARHealthInfoType healthpkg_data_;
LiDARManufactureInfoType manufacinfpkg_data_;
int lidar_measure_freq_ = 4000;
LDType typenumber_ = LDType::LD_14P;
LidarStatus lidarstatus_;
uint8_t lidarerrorcode_;
bool is_frame_ready_;
bool is_noise_filter_;
uint16_t timestamp_;
double speed_;
bool is_poweron_comm_normal_;
uint64_t last_pkg_timestamp_;
Points2D tmp_lidar_scan_data_vec_;
Points2D lidar_scan_data_vec_;
void Parse(byte b[], int le) {
// read the incoming byte:
for (int iii = 0; iii < le; iii++) {
uint8_t ret = AnalysisDataPacket(b[iii]);
if (ret == GET_PKG_PCD) {
LiDARMeasureDataType datapkg = GetPCDPacketData();
is_poweron_comm_normal_ = true;
speed_ = datapkg.speed;
timestamp_ = datapkg.timestamp;
// parse a package is success
double diff = (datapkg.end_angle / 100 - datapkg.start_angle / 100 + 360) % 360;
if (diff <= ((double)datapkg.speed * POINT_PER_PACK / lidar_measure_freq_ * 1.5)) {
if (0 == last_pkg_timestamp_) {
last_pkg_timestamp_ = get_timestamp_();
} else {
uint32_t current_pack_stamp = get_timestamp_();
int pkg_point_number = POINT_PER_PACK;
double pack_stamp_point_step = static_cast<double>(current_pack_stamp - last_pkg_timestamp_) / static_cast<double>(pkg_point_number - 1);
uint32_t diff = ((uint32_t)datapkg.end_angle + 36000 - (uint32_t)datapkg.start_angle) % 36000;
float step = diff / (POINT_PER_PACK - 1) / 100.0;
float start = (double)datapkg.start_angle / 100.0;
PointData data;
for (int i = 0; i < POINT_PER_PACK; i++) {
data.distance = datapkg.point[i].distance;
data.angle = start + i * step;
if (data.angle >= 360.0) {
data.angle -= 360.0;
}
data.intensity = datapkg.point[i].intensity;
data.stamp = static_cast<uint32_t>(last_pkg_timestamp_ + (pack_stamp_point_step * i));
tmp_lidar_scan_data_vec_.push_back(PointData(data.angle, data.distance, data.intensity, data.stamp));
}
last_pkg_timestamp_ = current_pack_stamp; //// update last pkg timestamp
}
}
}
}
}
uint8_t AnalysisDataPacket(uint8_t byte) {
static enum {
HEADER,
VER_LEN,
DATA,
DATA_HEALTH,
DATA_MANUFACTURE,
} state = HEADER;
static uint16_t count = 0;
static uint8_t tmp[128] = { 0 };
static uint16_t pkg_count = sizeof(LiDARMeasureDataType);
static uint16_t pkghealth_count = sizeof(LiDARHealthInfoType);
static uint16_t pkgmanufac_count = sizeof(LiDARManufactureInfoType);
static bool check_healthinf_flag = false;
switch (state) {
case HEADER:
{
if (byte == PKG_HEADER) {
tmp[count++] = byte;
state = VER_LEN;
} else {
if (check_healthinf_flag) {
check_healthinf_flag = false;
}
}
break;
}
case VER_LEN:
{
if (byte == DATA_PKG_INFO) {
tmp[count++] = byte;
state = DATA;
if (check_healthinf_flag) {
check_healthinf_flag = false;
return GET_PKG_HEALTH;
}
} else if (byte == HEALTH_PKG_INFO) {
tmp[count++] = byte;
state = DATA_HEALTH;
if (check_healthinf_flag) {
check_healthinf_flag = false;
return GET_PKG_HEALTH;
}
} else if (byte == MANUFACT_PKG_INF) {
tmp[count++] = byte;
state = DATA_MANUFACTURE;
} else {
state = HEADER;
count = 0;
if (check_healthinf_flag) {
check_healthinf_flag = false;
}
return GET_PKG_ERROR;
}
break;
}
case DATA:
{
tmp[count++] = byte;
if (count >= pkg_count) {
memcpy((uint8_t *)&pcdpkg_data_, tmp, pkg_count);
uint8_t crc = CalCRC8((uint8_t *)&pcdpkg_data_, pkg_count - 1);
state = HEADER;
count = 0;
if (crc == pcdpkg_data_.crc8) {
return GET_PKG_PCD;
} else {
return GET_PKG_ERROR;
}
}
break;
}
case DATA_HEALTH:
{
tmp[count++] = byte;
if (count >= pkghealth_count) {
memcpy((uint8_t *)&healthpkg_data_, tmp, pkghealth_count);
uint8_t crc = CalCRC8((uint8_t *)&healthpkg_data_, pkghealth_count - 1);
state = HEADER;
count = 0;
if (crc == healthpkg_data_.crc8) {
check_healthinf_flag = true;
} else {
check_healthinf_flag = false;
}
return GET_PKG_ERROR;
}
break;
}
case DATA_MANUFACTURE:
{
tmp[count++] = byte;
if (count >= pkgmanufac_count) {
memcpy((uint8_t *)&manufacinfpkg_data_, tmp, pkgmanufac_count);
uint8_t crc = CalCRC8((uint8_t *)&manufacinfpkg_data_, pkgmanufac_count - 1);
state = HEADER;
count = 0;
if (crc == manufacinfpkg_data_.crc8) {
return GET_PKG_MANUFACT;
} else {
return GET_PKG_ERROR;
}
}
break;
}
default:
{
break;
}
}
return GET_PKG_ERROR;
}
uint8_t CalCRC8(const uint8_t *data, uint16_t data_len) {
uint8_t crc = 0;
while (data_len--) {
crc = CrcTable[(crc ^ *data) & 0xff];
data++;
}
return crc;
}
LiDARMeasureDataType &GetPCDPacketData(void) {
return pcdpkg_data_;
}
LiDARHealthInfoType &GetHealthPacketData(void) {
return healthpkg_data_;
}
LiDARManufactureInfoType &GetManufactureInfoPacketData(void) {
return manufacinfpkg_data_;
}
double get_timestamp_(void) {
return millis();
}
double GetSpeed(void) {
return (speed_ / 360.0); // unit is Hz
}
bool AssemblePacket() {
float last_angle = 0;
Points2D tmp, data;
int count = 0;
if (speed_ <= 0) {
tmp_lidar_scan_data_vec_.erase(tmp_lidar_scan_data_vec_.begin(), tmp_lidar_scan_data_vec_.end());
return false;
}
for (auto n : tmp_lidar_scan_data_vec_) {
// wait for enough data, need enough data to show a circle
// enough data has been obtained
if ((n.angle < 20.0) && (last_angle > 340.0)) {
if ((count * GetSpeed()) > (lidar_measure_freq_ * 1.4)) {
if (count >= (int)tmp_lidar_scan_data_vec_.size()) {
tmp_lidar_scan_data_vec_.clear();
} else {
tmp_lidar_scan_data_vec_.erase(tmp_lidar_scan_data_vec_.begin(), tmp_lidar_scan_data_vec_.begin() + count);
}
return false;
}
data.insert(data.begin(), tmp_lidar_scan_data_vec_.begin(), tmp_lidar_scan_data_vec_.begin() + count);
SlTransform trans(typenumber_);
data = trans.Transform(data); // transform raw data to stantard data
tmp = data;
if (tmp.size() > 0) {
lidar_scan_data_vec_ = tmp;
SetFrameReady();
if (count >= (int)tmp_lidar_scan_data_vec_.size()) {
tmp_lidar_scan_data_vec_.clear();
} else {
tmp_lidar_scan_data_vec_.erase(tmp_lidar_scan_data_vec_.begin(), tmp_lidar_scan_data_vec_.begin() + count);
}
return true;
}
}
count++;
if ((count * GetSpeed()) > (lidar_measure_freq_ * 2)) {
if (count >= (int)tmp_lidar_scan_data_vec_.size()) {
tmp_lidar_scan_data_vec_.clear();
} else {
tmp_lidar_scan_data_vec_.erase(tmp_lidar_scan_data_vec_.begin(), tmp_lidar_scan_data_vec_.begin() + count);
}
return false;
}
last_angle = n.angle;
}
return false;
}
SlTransform::SlTransform(LDType version, bool to_right_hand) {
offset_x_ = 5.9;
offset_y_ = -18.975571;
to_right_hand_ = to_right_hand;
version_ = version;
}
Points2D SlTransform::Transform(const Points2D &data) {
Points2D tmp2;
static double last_shift_delta = 0;
for (auto n : data) {
// transfer the origin to the center of lidar circle
// The default direction of radar rotation is clockwise
// transfer to the right-hand coordinate system
double angle;
if (n.distance > 0) {
double x = n.distance + offset_x_;
double y = n.distance * 0.11923 + offset_y_;
double shift = atan(y / x) * 180.f / 3.14159;
// Choose whether to use the right-hand system according to the flag
if (to_right_hand_) {
float right_hand = (360.f - n.angle);
angle = right_hand + shift;
} else {
angle = n.angle - shift;
}
last_shift_delta = shift;
} else {
if (to_right_hand_) {
float right_hand = (360.f - n.angle);
angle = right_hand + last_shift_delta;
} else {
angle = n.angle - last_shift_delta;
}
}
if (angle > 360) {
angle -= 360;
}
if (angle < 0) {
angle += 360;
}
if (n.distance == 0) {
//tmp2.push_back(PointData(angle, n.distance, 0, n.stamp));
} else {
tmp2.push_back(PointData(angle, n.distance, n.intensity, n.stamp));
}
}
return tmp2;
}
SlTransform::~SlTransform() {}
void SetLidarStatus(LidarStatus status) {
lidarstatus_ = status;
}
void SetFrameReady(void) {
is_frame_ready_ = true;
}
void SetLaserScanData(Points2D &src) {
lidar_scan_data_vec_ = src;
}
Points2D GetLaserScanData(void) {
return lidar_scan_data_vec_;
}