-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcgal_polyhedra.cc
179 lines (137 loc) · 5.17 KB
/
cgal_polyhedra.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// Adapted from CGAL example (Author: Pierre Alliez) by Vladimir Fuka.
// Reworked for the new API following https://github.com/CGAL/cgal/blob/master/AABB_tree/examples/AABB_tree/AABB_polyhedron_facet_intersection_example.cpp
// by Camille Wormser, Pierre Alliez
#include <iostream>
#include <fstream>
#include <list>
#include <optional>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
typedef CGAL::Simple_cartesian<double> K;
typedef K::Point_3 Point;
typedef K::Plane_3 Plane;
typedef K::Vector_3 Vector;
typedef K::Segment_3 Segment;
typedef K::Ray_3 Ray;
typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef CGAL::AABB_face_graph_triangle_primitive<Polyhedron> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;
typedef std::optional< Tree::Intersection_and_primitive_id<Segment>::Type > Segment_intersection;
typedef std::optional< Tree::Intersection_and_primitive_id<Plane>::Type > Plane_intersection;
typedef Tree::Primitive_id Primitive_id;
typedef CGAL::Bbox_3 Bbox_3;
typedef struct {double x,y,z;} d3;
struct Polytree {
Polyhedron *poly=nullptr;
Tree *tree=nullptr;
bool infinity_outside; //whether consider infinity as outside or inside
};
using std::cout;
using std::endl;
extern "C" {
void polyhedron_from_file(Polytree ** const pptree,
const char * const fname,
const bool verbose,
const bool infinity_outside,
int * const ierr){
Polyhedron *polyhedron = new Polyhedron;
std::ifstream in(fname);
if (verbose) {cout << " Reading file " << fname << " " << endl;}
try {
in >> *polyhedron;
}
catch(...) {
*ierr = 2;
return;
}
Tree *tree = new Tree(faces(*polyhedron).first, faces(*polyhedron).second, *polyhedron);
if (verbose) {
cout << " facets: " << polyhedron->size_of_facets() << endl;
cout << " halfedges: " << polyhedron->size_of_halfedges() << endl;
cout << " vertices: " << polyhedron->size_of_vertices() << endl;
}
if (polyhedron->size_of_facets()==0 ||
polyhedron->size_of_halfedges()==0 ||
polyhedron->size_of_vertices()==0){
*ierr = 1;
return;
};
tree->accelerate_distance_queries();
*pptree = new Polytree;
(*pptree)->poly = polyhedron;
(*pptree)->tree = tree;
(*pptree)->infinity_outside = infinity_outside;
*ierr = 0;
}
void polyhedron_closest(const Polytree *ptree, const d3 *query, d3 *const near){
Point query_point(query->x,query->y,query->z);
Point closest = ptree->tree->closest_point(query_point);
near->x = closest.x();
near->y = closest.y();
near->z = closest.z();
}
bool polyhedron_inside(const Polytree *ptree, const d3 *query, const d3 *outside_ref){
Segment seg(Point(query->x,query->y,query->z),
Point(outside_ref->x,outside_ref->y,outside_ref->z));
std::list<Segment_intersection> intersections;
ptree->tree->all_intersections(seg, std::back_inserter(intersections));
std::vector<Point> points;
int i = 0;
for (auto iter = intersections.begin(); iter != intersections.end(); ++iter){
i += 1;
// gets intersection object
auto op = *iter;
// op is a std::optional< Tree::Intersection_and_primitive_id<Segment>::Type >
// which is a std::optional< std::pair<CGAL::Object, Primitive_id> >
if (op.has_value() == false) continue;
CGAL::Object object = op->first;
Point point;
if(CGAL::assign(point, object)) {
points.push_back(point);
}
}
int n_dist = 0;
// find how many of the points are distinct
for (std::vector<Point>::size_type i = 0; i < points.size(); ++i){
bool distinct = true;
for (std::vector<Point>::size_type j = 0; j < i; ++j){
Vector v = points[i] - points[j];
distinct = ( v.squared_length() > 1e-10 );
if (!distinct) break;
}
if (distinct) n_dist += 1;
}
if (ptree->infinity_outside) {
return n_dist%2 == 1;
} else{
return n_dist%2 == 0;
}
}
bool polyhedron_intersects_ray(const Polytree *ptree, const d3 *origin, const d3 *vec){
Ray ray(Point(origin->x,origin->y,origin->z),
Vector(vec->x,vec->y,vec->z));
try{
return ptree->tree->do_intersect(ray);
}
catch (...) {
cout << origin->x <<" "<< origin->y <<" "<< origin->z << endl;
cout << vec->x <<" "<< vec->y <<" "<< vec->z << endl;
return false;
}
}
void polyhedron_bbox(const Polytree *ptree, d3 *const min, d3 *const max){
Bbox_3 bbox = ptree->tree->bbox();
*min = {bbox.xmin(), bbox.ymin(), bbox.zmin()};
*max = {bbox.xmax(), bbox.ymax(), bbox.zmax()};
}
void polyhedron_finalize(Polytree **pptree){
delete (*pptree)->tree; (*pptree)->tree = NULL;
delete (*pptree)->poly; (*pptree)->poly = NULL;
delete *pptree; *pptree = NULL;
}
}