Skip to content

Latest commit

 

History

History
72 lines (53 loc) · 7.83 KB

README.md

File metadata and controls

72 lines (53 loc) · 7.83 KB

A Python library to perform Automated Side-Channel Attacks using Black-Box Neural Architecture Search

Package

The deepscapy is a python package for automatically finding optimal architectures when performing a side channel attack. Its Ranking Loss (RKL) implementation is based on https://github.com/gabzai/Ranking-Loss-SCA.

Installation

You can install deepsca using::

python setup.py install

Dependencies

deepscapy depends on NumPy, SciPy, matplotlib, scikit-learn, joblib and tqdm, tensorflow, tensorflow_addons, keras_tuner, keras, autokeras. For data processing and generation you will also need and pandas.

License

Apache License, Version 2.0

Datasets

The datasets used in the paper "Automated Side-Channel Attacks using Black-Box Neural Architecture Search" can be found at https://drive.google.com/drive/folders/1GcWQvwwEdbj2L0c1hd2YpLpbS-gIFJJ5. The following table shows their properties:

Dataset name # Features # Profiling traces # Attack traces Attack byte URL
ASCAD_f 700 50000 10000 2 ASCAD.h5 from https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
ASCAD_f desync50 700 50000 10000 2 ASCAD_desync50.h5 from "
ASCAD_f desync100 700 50000 10000 2 ASCAD_desync100.h5 from "
ASCAD_r 1400 200000 100000 2 ASCAD.h5 from https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key/
ASCAD_r desync50 1400 200000 100000 2 ASCAD_desync50.h5 from "
ASCAD_r desync100 1400 200000 100000 2 ASCAD_desync100.h5 from "
CHES CTF 2200 45000 5000 2 http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
AES_HD 1250 50000 25000 0 https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/AES_HD/AES_HD_dataset.zip
AES_RD 3500 25000 25000 0 https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_RD/AES_RD_dataset
DPAv4 4000 4500 500 0 https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip

More datasets of hardware side-channel attacks can be found at https://github.com/ITSC-Group/sca-datasets.

Search Space

The search space used in the paper "Automated Side-Channel Attacks using Black-Box Neural Architecture Search" is already defined in this project. These are the relevant parameter ranges:

Hyperparameter Type Hyperparameter Possible Options
Whole Network Optimizer {'adam' , 'adam_with_weight_decay'}
Learning rate {1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5}
Every Layer Dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
Use Batch Normalization {True, False}
Activation Function {'relu', 'selu', 'elu', 'tanh'}
Convolutional Block # of Blocks {1, 2, 3, 4, 5}
Convolutional Kernel Size {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
Convolutional Filters {2, 8, 16, 32, 64, 128, 256}
Pooling Type {'max' , 'average'}
Pooling Strides 1D CNN {2, 3, 4, 5, 6, 7, 8, 9, 10}
Pooling Poolsize 1D CNN {2, 3, 4, 5}
Pooling Strides 2D CNN {2, 4}
Pooling Poolsize 2D CNN Convolutional Kernel Size-1
Dense Block # of Blocks {1, 2, 3}
Hidden Units {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}