-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess_data.py
68 lines (55 loc) · 2.68 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
from sklearn.preprocessing import StandardScaler
import pandas as pd
PATHTRAININGDATA = './data/training.csv'
PATHVALIDATIONDATA = './data/validation.csv'
PATHTRAININGDATA_SINGLE = './data/training_single.csv'
PATHVALIDATIONDATA_SINGLE = './data/validation_single.csv'
PARAMETERS = ['ID', 'lattice_d_cell', 'lattice_d_rod', 'lattice_number_cells_x', 'scaling_factor_YZ']
TARGET = 'effective_stiffness'
def get_data(path):
a = np.genfromtxt(path, dtype=None, delimiter=',', skip_header=1, names=PARAMETERS + [TARGET])
X = np.array([a[PARAMETERS[1]], a[PARAMETERS[2]], a[PARAMETERS[3]], a[PARAMETERS[4]]]).T
y = np.array(a[TARGET])
return X, y
def preprocess_data(X: np.array):
scaler = StandardScaler()
scaler.fit(X)
print(f"Mean: {scaler.mean_}, Variance: {scaler.var_}")
return scaler.transform(X)
def scale_data(X: np.array, mean, std):
return (X - mean) / std
def check_double_rows() -> bool:
train_data = pd.read_csv(PATHTRAININGDATA).drop('ID', axis=1)
val_data = pd.read_csv(PATHVALIDATIONDATA).drop('ID', axis=1)
equal_rows = val_data.isin(train_data).all(axis=1)
print(f"Found {equal_rows.sum()} equal rows in train and validation data.")
print(f"Found {train_data.duplicated().sum()} duplicates in training data.")
print(f"Found {val_data.duplicated().sum()} duplicates in validation data.")
return equal_rows.any() or train_data.duplicated().any() or val_data.duplicated().any()
def delete_double_rows():
train_data = pd.read_csv(PATHTRAININGDATA).drop('ID', axis=1)
val_data = pd.read_csv(PATHVALIDATIONDATA).drop('ID', axis=1)
equal_rows = val_data.isin(train_data).all(axis=1)
print(f"Found {equal_rows.sum()} equal rows in train and validation data.")
print(f"Found {train_data.duplicated().sum()} duplicates in training data.")
print(f"Found {val_data.duplicated().sum()} duplicates in validation data.")
if equal_rows.any():
val_data_single = val_data.drop(val_data.index[equal_rows])
else:
val_data_single = val_data
if train_data.duplicated().any():
train_data_single = train_data.drop_duplicates()
else:
train_data_single = train_data
if val_data_single.duplicated().any():
val_data_single.drop_duplicates(inplace=True)
train_data_single.insert(0, 'ID', range(1,1 + len(train_data_single)))
val_data_single.insert(0, 'ID', range(1,1 + len(val_data_single)))
train_data_single.to_csv(PATHTRAININGDATA_SINGLE, index=False)
val_data_single.to_csv(PATHVALIDATIONDATA_SINGLE, index=False)
print("Deleted all duplicates and equal rows.")
return
if __name__ == '__main__':
check_double_rows()
delete_double_rows()