-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathoptimization.py
282 lines (223 loc) · 9.24 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""optimize over a network structure."""
import argparse
import logging
import os
import copy
import matplotlib.pyplot as plt
import numpy as np
import open3d as o3d
import pandas as pd
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from model import Neural_Prior
import config
from data import (ArgoverseSceneFlowDataset, KITTISceneFlowDataset,
NuScenesSceneFlowDataset, FlyingThings3D)
from utils import scene_flow_metrics, Timers, GeneratorWrap, EarlyStopping
from loss import my_chamfer_fn
from visualize import show_flows, flow_to_rgb, custom_draw_geometry_with_key_callback
device = torch.device("cuda:0")
def solver(
pc1: torch.Tensor,
pc2: torch.Tensor,
flow: torch.Tensor,
options: argparse.Namespace,
net: torch.nn.Module,
i: int,
):
for param in net.parameters():
param.requires_grad = True
if options.backward_flow:
net_inv = copy.deepcopy(net)
params = [{'params': net.parameters(), 'lr': options.lr, 'weight_decay': options.weight_decay},
{'params': net_inv.parameters(), 'lr': options.lr, 'weight_decay': options.weight_decay}]
else:
params = net.parameters()
if options.optimizer == "sgd":
print('using SGD.')
optimizer = torch.optim.SGD(params, lr=options.lr, momentum=options.momentum, weight_decay=options.weight_decay)
elif options.optimizer == "adam":
print("Using Adam optimizer.")
optimizer = torch.optim.Adam(params, lr=options.lr, weight_decay=0)
total_losses = []
chamfer_losses = []
early_stopping = EarlyStopping(patience=options.early_patience, min_delta=0.0001)
if options.time:
timers = Timers()
timers.tic("solver_timer")
pc1 = pc1.cuda().contiguous()
pc2 = pc2.cuda().contiguous()
flow = flow.cuda().contiguous()
normal1 = None
normal2 = None
# ANCHOR: initialize best metrics
best_loss_1 = 10.
best_flow_1 = None
best_epe3d_1 = 1.
best_acc3d_strict_1 = 0.
best_acc3d_relax_1 = 0.
best_angle_error_1 = 1.
best_outliers_1 = 1.
best_epoch = 0
for epoch in range(options.iters):
optimizer.zero_grad()
flow_pred_1 = net(pc1)
pc1_deformed = pc1 + flow_pred_1
loss_chamfer_1, _ = my_chamfer_fn(pc2, pc1_deformed, normal2, normal1)
if options.backward_flow:
flow_pred_1_prime = net_inv(pc1_deformed)
pc1_prime_deformed = pc1_deformed - flow_pred_1_prime
loss_chamfer_1_prime, _ = my_chamfer_fn(pc1_prime_deformed, pc1, normal2, normal1)
if options.backward_flow:
loss_chamfer = loss_chamfer_1 + loss_chamfer_1_prime
else:
loss_chamfer = loss_chamfer_1
loss = loss_chamfer
flow_pred_1_final = pc1_deformed - pc1
if options.compute_metrics:
EPE3D_1, acc3d_strict_1, acc3d_relax_1, outlier_1, angle_error_1 = scene_flow_metrics(flow_pred_1_final, flow)
else:
EPE3D_1, acc3d_strict_1, acc3d_relax_1, outlier_1, angle_error_1 = 0, 0, 0, 0, 0
# ANCHOR: get best metrics
if loss <= best_loss_1:
best_loss_1 = loss.item()
best_epe3d_1 = EPE3D_1
best_flow_1 = flow_pred_1_final
best_epe3d_1 = EPE3D_1
best_acc3d_strict_1 = acc3d_strict_1
best_acc3d_relax_1 = acc3d_relax_1
best_angle_error_1 = angle_error_1
best_outliers_1 = outlier_1
best_epoch = epoch
if epoch % 50 == 0:
logging.info(f"[Sample: {i}]"
f"[Ep: {epoch}] [Loss: {loss:.5f}] "
f" Metrics: flow 1 --> flow 2"
f" [EPE: {EPE3D_1:.3f}] [Acc strict: {acc3d_strict_1 * 100:.3f}%]"
f" [Acc relax: {acc3d_relax_1 * 100:.3f}%] [Angle error (rad): {angle_error_1:.3f}]"
f" [Outl.: {outlier_1 * 100:.3f}%]")
total_losses.append(loss.item())
chamfer_losses.append(loss_chamfer)
if options.animation:
yield flow_pred_1_final.detach().cpu().numpy()
if early_stopping.step(loss):
break
loss.backward()
optimizer.step()
if options.time:
timers.toc("solver_timer")
time_avg = timers.get_avg("solver_timer")
logging.info(timers.print())
# ANCHOR: get the best metrics
info_dict = {
'loss': best_loss_1,
'EPE3D_1': best_epe3d_1,
'acc3d_strict_1': best_acc3d_strict_1,
'acc3d_relax_1': best_acc3d_relax_1,
'angle_error_1': best_angle_error_1,
'outlier_1': best_outliers_1,
'time': time_avg,
'epoch': best_epoch
}
# NOTE: visualization
if options.visualize:
fig = plt.figure(figsize=(13, 5))
ax = fig.gca()
ax.plot(total_losses, label="loss")
ax.legend(fontsize="14")
ax.set_xlabel("Iteration", fontsize="14")
ax.set_ylabel("Loss", fontsize="14")
ax.set_title("Loss vs iterations", fontsize="14")
plt.show()
idx = 0
show_flows(pc1[idx], pc2[idx], best_flow_1[idx])
# ANCHOR: new plot style
pc1_o3d = o3d.geometry.PointCloud()
colors_flow = flow_to_rgb(flow[0].cpu().numpy().copy())
pc1_o3d.points = o3d.utility.Vector3dVector(pc1[0].cpu().numpy().copy())
pc1_o3d.colors = o3d.utility.Vector3dVector(colors_flow / 255.0)
custom_draw_geometry_with_key_callback([pc1_o3d]) # Press 'k' to see with dark background.
return info_dict
def optimize_neural_prior(options, data_loader):
if options.time:
timers = Timers()
timers.tic("total_time")
save_dir_path = f"checkpoints/{options.exp_name}"
outputs = []
if options.model == 'neural_prior':
net = Neural_Prior(filter_size=options.hidden_units, act_fn=options.act_fn, layer_size=options.layer_size).cuda()
else:
raise Exception("Model not available.")
for i, data in tqdm(enumerate(data_loader), total=len(data_loader), smoothing=0.9):
logging.info(f"# Working on sample: {data_loader.dataset.datapath[i]}...")
pc1, pc2, flow = data
if options.visualize:
idx = 0
# NOTE: ground truth flow
show_flows(pc1[idx], pc2[idx], flow[idx])
solver_generator = GeneratorWrap(solver(pc1, pc2, flow, options, net, i))
if options.animation:
#TODO: save frames to make video.
info_dict = solver_generator.value
else:
for _ in solver_generator: pass
info_dict = solver_generator.value
# Collect results.
info_dict['filepath'] = data_loader.dataset.datapath[i]
outputs.append(info_dict)
print(info_dict)
if options.time:
timers.toc("total_time")
time_avg = timers.get_avg("total_time")
logging.info(timers.print())
df = pd.DataFrame(outputs)
df.loc['mean'] = df.mean()
logging.info(df.mean())
df.loc['total time'] = time_avg
df.to_csv('{:}.csv'.format(f"{save_dir_path}/results"))
logging.info("Finish optimization!")
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Neural Scene Flow Prior.")
config.add_config(parser)
options = parser.parse_args()
exp_dir_path = f"checkpoints/{options.exp_name}"
if not os.path.exists(exp_dir_path):
os.makedirs(exp_dir_path)
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s [%(levelname)s] - %(message)s',
handlers=[logging.FileHandler(filename=f"{exp_dir_path}/run.log"), logging.StreamHandler()])
logging.info(options)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.info('---------------------------------------')
print_options = vars(options)
for key in print_options.keys():
logging.info(key+': '+str(print_options[key]))
logging.info('---------------------------------------')
torch.backends.cudnn.deterministic = True
torch.manual_seed(options.seed)
torch.cuda.manual_seed_all(options.seed)
np.random.seed(options.seed)
if options.dataset == "KITTISceneFlowDataset":
data_loader = DataLoader(
KITTISceneFlowDataset(options=options, train=False),
batch_size=options.batch_size, shuffle=False, drop_last=False, num_workers=12
)
elif options.dataset == "FlyingThings3D":
data_loader = DataLoader(
FlyingThings3D(options=options, partition="test"),
batch_size=options.batch_size, shuffle=False, drop_last=False, num_workers=12
)
elif options.dataset == "ArgoverseSceneFlowDataset":
data_loader = DataLoader(
ArgoverseSceneFlowDataset(options=options, partition=options.partition),
batch_size=options.batch_size, shuffle=False, drop_last=False, num_workers=12
)
elif options.dataset == "NuScenesSceneFlowDataset":
data_loader = DataLoader(
NuScenesSceneFlowDataset(options=options, partition="val"),
batch_size=options.batch_size, shuffle=False, drop_last=False, num_workers=12
)
optimize_neural_prior(options, data_loader)