forked from DreAymi/SAXS_reconstruction
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathresult2pdb.py
executable file
·150 lines (133 loc) · 5.72 KB
/
result2pdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import voxel2pdb
import pdb2voxel
from scitbx.array_family import flex
import align
import os
import numpy as np
from sastbx.zernike_model import pdb2zernike
import zalign
import map2iq
def write2pdb(group,rmax,output_folder,iq_file=None,target_pdb=None):
if iq_file is not None:
tar_iq_curve=np.loadtxt(iq_file,usecols=(0))
tar_iq_curve=tar_iq_curve.reshape(-1,1)
num=len(group)
os.system('mkdir %s/sub2'%output_folder)
os.system('mkdir %s/sub3'%output_folder)
for ii in range(num):
voxel2pdb.write_pdb(group[ii],'%s/sub2/%d.pdb'%(output_folder,ii),rmax)
fix='%s/sub2/0.pdb'%output_folder
data=[]
for ii in range(num):
mov='%s/sub2/%d.pdb'%(output_folder,ii)
align.run(fix,mov,'%s/sub3/%d.pdb'%(output_folder,ii))
voxel=pdb2voxel.run(['pdbfile=%s/sub3/%d.pdb'%(output_folder,ii)])
data.append(voxel)
data=np.array(data)
data=np.mean(data,axis=0)
ccp4data=np.copy(data)
data=np.greater(data,0.3).astype(int)
if iq_file is not None:
iq_curve,exp_data=map2iq.run_get_voxel_iq(data,iq_file,rmax)
iq_curve=np.array(iq_curve)
#iq_curve=iq_curve/iq_curve[0]
newiq_curve=np.concatenate((tar_iq_curve,iq_curve.reshape((-1,1))),axis=1)
np.savetxt('%s/final_saxs.txt'%output_folder,newiq_curve)
voxel2pdb.write_pdb(data,'%s/out.pdb'%output_folder,rmax)
'''
if iq_file is not None:
out_voxel=pdb2voxel.run(['pdbfile=%s/out.pdb'%output_folder])
out_curve,exp_data=map2iq.run_get_voxel_iq(out_voxel,iq_file,rmax)
out_curve=np.array(out_curve)
out_curve=out_curve/out_curve[0]
newout_curve=np.concatenate((tar_iq_curve,out_curve.reshape((-1,1))),axis=1)
np.savetxt('%s/final_pdb_saxs.txt'%output_folder,newout_curve)
'''
ccp4data=flex.double(ccp4data)
pdb2zernike.ccp4_map_type(ccp4data, 15, rmax/0.9,file_name='%s/out.ccp4'%output_folder)
shiftrmax=rmax/0.9
args=['fix=%s/out.ccp4'%output_folder,'typef=ccp4','mov=%s/out.pdb'%output_folder,'rmax=%f'%shiftrmax]
zalign.run(args,output_folder)
os.system('rm -r %s/sub2'%output_folder)
os.system('rm -r %s/sub3'%output_folder)
if target_pdb is not None:
args=['fix=%s/out.ccp4'%output_folder,'typef=ccp4','mov=%s'%target_pdb,'rmax=%f'%shiftrmax]
zalign.run(args,output_folder)
if 'sample.pdb' in os.listdir(output_folder):
args=['fix=%s/out.ccp4'%output_folder,'typef=ccp4','mov=%s/sample.pdb'%output_folder,'rmax=%f'%shiftrmax]
zalign.run(args,output_folder)
def write_single_pdb(group,rmax,output_folder,target_pdb=None):
ccp4data=np.copy(group.astype(float))
voxel2pdb.write_pdb(group,'%s/out.pdb'%output_folder,rmax)
ccp4data=flex.double(ccp4data)
pdb2zernike.ccp4_map_type(ccp4data, 15, rmax/0.9,file_name='%s/out.ccp4'%output_folder)
shiftrmax=rmax/0.9
args=['fix=%s/out.ccp4'%output_folder,'typef=ccp4','mov=%s/out.pdb'%output_folder,'rmax=%f'%shiftrmax]
zalign.run(args,output_folder)
if target_pdb is not None:
args=['fix=%s/out.ccp4'%output_folder,'typef=ccp4','mov=%s'%target_pdb,'rmax=%f'%shiftrmax]
zalign.run(args,output_folder)
def cal_cc(voxel_group,rmax,output_folder,target_pdb):
os.system('mkdir %s/temp'%output_folder)
num=voxel_group.shape[0]
cc_mat=np.zeros(shape=(num,20))
for ii in range(num):
for jj in range(20):
voxel2pdb.write_pdb(voxel_group[ii,jj],'%s/temp/%d_%d.pdb'%(output_folder,ii,jj),rmax)
cc=align.run(fix=target_pdb,mov='%s/temp/%d_%d.pdb'%(output_folder,ii,jj))
cc_mat[ii,jj]=cc
print ii,jj,'%.3f'%cc
#np.save('%s/cc_mat.npy'%output_folder,cc_mat)
np.savetxt('%s/cc_mat.txt'%output_folder,cc_mat,fmt='%.3f')
os.system('rm -rf %s/temp'%output_folder)
'''
def cal_cc(voxel_group,rmax,output_folder,target_pdb,iq_file=None):
os.system('mkdir %s/temp'%output_folder)
os.system('mkdir %s/temp1'%output_folder)
os.system('mkdir %s/temp2'%output_folder)
if iq_file is not None:
os.system('mkdir %s/saxs_fit_data'%output_folder)
tar_iq_curve=np.loadtxt(iq_file,usecols=(0))
tar_iq_curve=tar_iq_curve.reshape(-1,1)
num=voxel_group.shape[0]
cc_mat=np.zeros(shape=(num,20))
cc_mat_aver=np.zeros(shape=(num))
for ii in range(num):
for jj in range(20):
voxel2pdb.write_pdb(voxel_group[ii,jj],'%s/temp/%d_%d.pdb'%(output_folder,ii,jj),rmax)
if iq_file is not None and jj==0:
iq_curve,exp_data=map2iq.run_get_voxel_iq(voxel_group[ii,jj],iq_file,rmax)
iq_curve=np.array(iq_curve)
iq_curve=iq_curve/iq_curve[0]
newiq_curve=np.concatenate((tar_iq_curve,iq_curve.reshape((-1,1))),axis=1)
np.savetxt('%s/saxs_fit_data/%d_generation_voxelsaxs.txt'%(output_folder,ii),newiq_curve)
cc=align.run(fix=target_pdb,mov='%s/temp/%d_%d.pdb'%(output_folder,ii,jj))
cc_mat[ii,jj]=cc
print ii,jj,'%.3f'%cc
fix='%s/temp/%d_0.pdb'%(output_folder,ii)
if iq_file is not None:
out_voxel=pdb2voxel.run(['pdbfile=%s'%fix])
out_curve,exp_data=map2iq.run_get_voxel_iq(out_voxel,iq_file,rmax)
out_curve=np.array(out_curve)
out_curve=out_curve/out_curve[0]
newout_curve=np.concatenate((tar_iq_curve,out_curve.reshape((-1,1))),axis=1)
np.savetxt('%s/saxs_fit_data/%d_generation_pdbsaxs.txt'%(output_folder,ii),newout_curve)
data=[]
for jj in range(20):
mov='%s/temp/%d_%d.pdb'%(output_folder,ii,jj)
align.run(fix,mov,'%s/temp1/%d_%d.pdb'%(output_folder,ii,jj))
voxel=pdb2voxel.run(['pdbfile=%s/temp1/%d_%d.pdb'%(output_folder,ii,jj)])
data.append(voxel)
data=np.array(data)
data=np.mean(data,axis=0)
data=np.greater(data,0.3).astype(int)
voxel2pdb.write_pdb(data,'%s/temp2/%d.pdb'%(output_folder,ii),rmax)
cc_aver=align.run(fix=target_pdb,mov='%s/temp2/%d.pdb'%(output_folder,ii))
cc_mat_aver[ii]=cc_aver
print ii,'%.3f'%cc_aver
np.savetxt('%s/cc_mat.txt'%output_folder,cc_mat,fmt='%.3f')
np.savetxt('%s/cc_mat_aver.txt'%output_folder,cc_mat_aver,fmt='%.3f')
os.system('rm -rf %s/temp'%output_folder)
os.system('rm -rf %s/temp1'%output_folder)
os.system('rm -rf %s/temp2'%output_folder)
'''