-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize.py
321 lines (256 loc) · 13.7 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import sys
from io import BytesIO
from cv2 import VideoWriter
import imageio.v3 as iio
import matplotlib.pyplot as plt
import numpy as np
import torch
from scipy.stats import multivariate_normal
from skimage.transform import resize
from tqdm import tqdm, trange
from matplotlib.patheffects import withStroke
import ngssf
def picture_isotropic():
_picture(
ngssf.results.visualizations_dir() / "picture_isotropic",
"variance_benchmark",
list(range(len(ngssf.data.benchmark_variances())))
)
def picture_anisotropic():
_picture(
ngssf.results.visualizations_dir() / "picture_anisotropic",
"covariance_matrix_benchmark",
[87, 99]
)
def _picture(base_dir, scale_set, indices):
for name in tqdm(args_or([
"bbq", "cliffs", "colosseo", "crystals", "firenze", "firewood", "mutter", "peak", "portal", "rue",
"schaumbrunnen", "steepshore", "toomuchbleach", "tunnelrampe", "zebras"
]), desc="name", leave=False):
for index in tqdm(indices, desc="scale", leave=False):
gauss_img = _prepare_picture_image(ngssf.results.load_benchmark("gauss", "picture", name, scale_set, index))
pred_img = _prepare_picture_image(ngssf.results.load_benchmark("neural", "picture", name, scale_set, index))
error_img = plt.cm.hot(np.mean(np.abs(pred_img - gauss_img), axis=2))[:, :, :3]
ones = np.ones(gauss_img.shape[:2])
comp_img = np.rot90(np.triu(ones))[:, :, None] * pred_img + np.rot90(np.tril(ones))[:, :, None] * error_img
_write_image(base_dir / name / f"{index}.jpg", comp_img)
def picture_foveation():
name = arg_or("squirrel")
field = ngssf.results.load_neural_field("neural", "picture", name).cuda()
res = 512
X = ngssf.util.grid_coords(res, 2, device="cuda")
with torch.no_grad():
pred_img = field(X, (X.norm(dim=1) - 0.35).clamp(0) ** 3 / 200).T.reshape(3, res, res)
img = _prepare_picture_image(pred_img)
_write_image(ngssf.results.visualizations_dir() / "picture_foveation" / f"{name}.jpg", img)
def _prepare_picture_image(img):
return _prepare_image(ngssf.util.convert_color_space(img, "ProPhotoRGB", "sRGB"))
def mesh_isotropic():
scale_set = "variance_benchmark"
for name in tqdm(args_or(ngssf.data.names("mesh")), desc="name", leave=False):
d = ngssf.results.visualizations_dir() / "mesh_isotropic"
dg = d / name / "gauss"
dn = d / name / "neural"
dg.mkdir(parents=True, exist_ok=True)
dn.mkdir(parents=True, exist_ok=True)
for index in trange(4, desc="scale", leave=False):
gauss_m = ngssf.util.mesh_from_grid(ngssf.results.load_benchmark("gauss", "mesh", name, scale_set, index))
pred_m = ngssf.util.mesh_from_grid(ngssf.results.load_benchmark("neural", "mesh", name, scale_set, index))
gauss_m.export(dg / f"{index}.ply")
pred_m.export(dn / f"{index}.ply")
def mesh_anisotropic():
name = arg_or("thai")
d = ngssf.results.visualizations_dir() / "mesh_anisotropic" / name
d.mkdir(parents=True, exist_ok=True)
field = ngssf.results.load_neural_field("neural", "mesh", name).cuda()
for label, variances in [
("isotropic", [1e-2, 1e-2, 1e-2]),
("anisotropic_horizontal", [1e-2, 1e-8, 1e-2]),
("anisotropic_vertical", [1e-8, 1e-2, 1e-8])
]:
scale = torch.diag(torch.tensor(variances))
with torch.no_grad():
grid = ngssf.util.eval_grid(256, field, scale.cuda(), batch_size=2 ** 18).cpu()
ngssf.util.mesh_from_grid(grid).export(d / f"{label}.ply")
def lightstage():
name = arg_or("cute")
light_positions = ngssf.data.lightstage_light_positions()
field = ngssf.results.load_neural_field("neural", "lightstage", name).cuda()
w, h = 512, 384
X = torch.cat([
torch.cartesian_prod(torch.linspace(-0.75, 0.75, h), torch.linspace(-1, 1, w)).flip(1),
light_positions[22].tile(w * h, 1)
], dim=1)
for i, scale in enumerate([0, 1]):
with torch.no_grad():
Y = field(X.cuda(), scale)
img = _prepare_image(Y.T.reshape(3, h, w))
_write_image(ngssf.results.visualizations_dir() / "lightstage" / name / f"{i}.jpg", img)
def picture_video():
d = ngssf.results.visualizations_dir() / "picture_video"
d.mkdir(parents=True, exist_ok=True)
cov_mats = _interpolate_2d_covariance_matrices(
np.array([0, 240, 300, 420, 540, 660, 780]),
np.array([[0, -7, -7], [0, -1, -1], [0, -4, -1], [0.25, -4, -1], [0.5, -4, -2], [0.75, -7, -2], [1, -7, -7]])
)
spectrum_label = _label("Spectrum", 1300, (128, 32), overlay=True)
cov_label = _label("Covariance", 1300, (128, 32))
for name in tqdm(args_or(["bbq", "firewood", "schaumbrunnen", "tunnelrampe"]), leave=False):
orig_picture = torch.as_tensor(resize(ngssf.data.load("picture", name).numpy(), (3, 512, 512)), device="cuda")
neural_field = ngssf.results.load_neural_field("neural", "picture", name).cuda()
gauss_field = ngssf.GaussianMonteCarloSmoothableField(ngssf.GridField(orig_picture, padding_mode="reflection"))
video = VideoWriter(str(d / f"{name}.mp4"), VideoWriter.fourcc('a', 'v', 'c', '1'), 60, (1152, 512))
for cov_mat in tqdm(cov_mats, leave=False):
with torch.no_grad():
neural_picture = ngssf.util.eval_grid(512, neural_field, cov_mat).cpu()
gauss_picture = ngssf.util.eval_grid(512, gauss_field, cov_mat).cpu()
frame = torch.ones(3, 512, 1152)
frame[:, :, :512] = ngssf.util.convert_color_space(neural_picture, "ProPhotoRGB", "sRGB")
frame[:, :, -512:] = ngssf.util.convert_color_space(gauss_picture, "ProPhotoRGB", "sRGB")
frame[:, -128:, :128] = _spectrum(neural_picture)
frame[:, -128:, -128:] = _spectrum(gauss_picture)
frame[:, 128:-128, 512:-512] = _isolines(cov_mat, 0.5, (128, 256))
_alpha_blend(frame[:, -160:-128, :128], spectrum_label)
_alpha_blend(frame[:, -160:-128, -128:], spectrum_label)
frame[:, 96:128, 512:-512] = cov_label
video.write(np.flip((_prepare_image(frame) * 255).astype(np.uint8), axis=2))
video.release()
def _spectrum(picture):
spectrum = ngssf.util.image_spectrum(picture.mean(dim=0, keepdim=True))
crop = (picture.shape[1] - 128) // 2
return (spectrum[0, crop:-crop, crop:-crop].clamp(1e-5).log10() - 1.5).clamp(0) / 3.5 * 2 - 1
def mesh_video_objects():
cov_mats = torch.tensor(_mesh_video_covariance_matrices(), dtype=torch.float32, device="cuda")
for name in tqdm(args_or(ngssf.data.names("mesh")), leave=False):
orig_mesh = ngssf.data.load("mesh", name)
neural_field = ngssf.results.load_neural_field("neural", "mesh", name).cuda()
gauss_field = ngssf.GaussianMonteCarloSmoothableField(
ngssf.GridField(ngssf.util.eval_grid(1021, ngssf.SDFField(orig_mesh), bounds=2), bounds=2)
).cuda()
d = ngssf.results.visualizations_dir() / "mesh_video" / name
dn = d / "meshes_neural"
dg = d / "meshes_gauss"
dn.mkdir(parents=True, exist_ok=True)
dg.mkdir(parents=True, exist_ok=True)
for i, cov_mat in enumerate(tqdm(cov_mats, leave=False)):
with torch.no_grad():
neural_grid = ngssf.util.eval_grid(256, neural_field, cov_mat, batch_size=2 ** 18).cpu()
neural_mesh = ngssf.util.mesh_from_grid(neural_grid)
gauss_mesh = ngssf.util.mesh_from_grid(ngssf.util.eval_grid(256, gauss_field, cov_mat).cpu())
neural_mesh.export(dn / f"{i:05d}.ply")
gauss_mesh.export(dg / f"{i:05d}.ply")
def mesh_video_ellipsoids():
d = ngssf.results.visualizations_dir() / "mesh_video" / "ellipsoids"
d.mkdir(parents=True, exist_ok=True)
X = np.linspace(-0.5, 0.5, 512)
for i, cov_mat in enumerate(tqdm(_mesh_video_covariance_matrices(), leave=False)):
Y = multivariate_normal(cov=cov_mat).pdf(np.stack(np.meshgrid(X, X, X), axis=-1))
mesh = ngssf.util.mesh_from_grid(torch.as_tensor(-Y)[None], level=-0.5)
mesh.export(d / f"{i:05d}.ply")
def _mesh_video_covariance_matrices():
times = np.array([0, 180, 300, 420, 540])
logvars = np.array([[-7, -7, -7], [-3, -3, -3], [-3, -7, -3], [-7, -3, -7], [-7, -7, -7]])
frames = np.arange(times.max() + 1)
cov_mats = np.zeros((len(frames), 3, 3))
cov_mats[:, 0, 0] = 10 ** np.interp(frames, times, logvars[:, 0])
cov_mats[:, 1, 1] = 10 ** np.interp(frames, times, logvars[:, 1])
cov_mats[:, 2, 2] = 10 ** np.interp(frames, times, logvars[:, 2])
return cov_mats
def lightstage_video():
name = arg_or("cute")
d = ngssf.results.visualizations_dir() / "lightstage_video"
d.mkdir(parents=True, exist_ok=True)
light_shots = ngssf.data.load("lightstage", name)
light_pos = ngssf.data.lightstage_light_positions()
neural_field = ngssf.results.load_neural_field("neural", "lightstage", name).cuda()
neural_field.calibration_factors[1] = 500
gauss_field = ngssf.GaussianMonteCarloSmoothableField(ngssf.LightStageField(light_shots, light_pos), {2, 3}).cuda()
times = np.array([0, 180, 480, 660, 960])
frames = np.arange(times.max() + 1)
xs_light = torch.tensor(np.array([
np.interp(frames, times, coord)
for coord in np.array([light_pos[2], light_pos[22], light_pos[22], light_pos[2], light_pos[2]]).T
]).T, dtype=torch.float32, device="cuda")
cov_mats = _interpolate_2d_covariance_matrices(
times,
np.array([[0, -6, -6], [0, -6, -6], [0, -2, -2], [0, -2, -2], [0, -6, -6]])
)
w, h = 512, 384
X_pixel = torch.cartesian_prod(torch.linspace(-0.75, 0.75, h), torch.linspace(-1, 1, w)).flip(1).cuda()
light_label = _label("Light Dir.", 1300, (128, 32))
cov_label = _label("Covariance", 1300, (128, 32))
plotted_pos = light_pos[(light_pos - (light_pos[2] + light_pos[22]) / 2).norm(dim=1) < 0.15]
video = VideoWriter(str(d / f"{name}.mp4"), VideoWriter.fourcc('a', 'v', 'c', '1'), 60, (1152, 384))
for x_light, cov_mat in tqdm(list(zip(xs_light, cov_mats)), leave=False):
X = torch.cat([X_pixel, x_light.tile(w * h, 1)], dim=1).cuda()
with torch.no_grad():
neural_image = neural_field(X, cov_mat).T.reshape(3, h, w).cpu()
gauss_image = gauss_field(X, cov_mat).T.reshape(3, h, w).cpu()
frame = torch.ones(3, 384, 1152)
frame[:, :, :512] = neural_image
frame[:, :, -512:] = gauss_image
frame[:, 48:176, 512:-512] = _light_position(plotted_pos, x_light, (128, 128))
frame[:, 240:368, 512:-512] = _isolines(cov_mat, 0.75, (128, 128))
frame[:, 16:48, 512:-512] = light_label
frame[:, 208:240, 512:-512] = cov_label
video.write(np.flip((_prepare_image(frame) * 255).astype(np.uint8), axis=2))
video.release()
def _interpolate_2d_covariance_matrices(times, angles_and_logvars):
frames = np.arange(times.max() + 1)
angles = np.interp(frames, times, angles_and_logvars[:, 0])
lv1 = np.interp(frames, times, angles_and_logvars[:, 1])
lv2 = np.interp(frames, times, angles_and_logvars[:, 2])
angles = angles * (2 * np.pi)
rot_mats = np.moveaxis(np.array([[np.cos(angles), -np.sin(angles)], [np.sin(angles), np.cos(angles)]]), 2, 0)
var_mats = np.moveaxis(np.array([[10 ** lv1, np.zeros(len(angles))], [np.zeros(len(angles)), 10 ** lv2]]), 2, 0)
return torch.as_tensor(rot_mats @ var_mats @ np.swapaxes(rot_mats, 1, 2), dtype=torch.float32, device="cuda")
def _isolines(cov_mat, min_range, size):
x_range = min_range * size[0] / min(size)
y_range = min_range * size[1] / min(size)
X = np.linspace(-x_range, x_range, 1024)
Y = np.linspace(-y_range, y_range, 1024)
Z = multivariate_normal(cov=cov_mat.numpy(force=True)).pdf(np.stack(np.meshgrid(X, Y), axis=-1))
dpi = 50
fig, ax = plt.subplots(figsize=np.array(size) / dpi, dpi=dpi)
ax.contour(X, Y, Z, levels=np.linspace(0.5, Z.max(), 6))
ax.invert_yaxis()
ax.axis("equal")
return _plot_to_tensor(fig, ax, dpi, False)
def _light_position(all_pos, cur_pos, size):
dpi = 50
fig, ax = plt.subplots(figsize=np.array(size) / dpi, dpi=dpi)
plt.scatter(*all_pos.numpy(force=True).T, color="lightgray")
plt.scatter(*cur_pos.numpy(force=True)[:, None], color="C0", s=dpi * 2)
ax.axis("equal")
return _plot_to_tensor(fig, ax, dpi, False)
def _label(text, fontsize, size, overlay=False):
fig, ax = plt.subplots(figsize=size, dpi=1)
ax.text(
0.5, 0.5, text, fontsize=fontsize, horizontalalignment="center", verticalalignment="center_baseline",
color="white" if overlay else "black",
path_effects=[withStroke(linewidth=fontsize * 0.15, foreground="black")] if overlay else None
)
return _plot_to_tensor(fig, ax, 1, overlay)
def _plot_to_tensor(fig, ax, dpi, transparent):
ax.axis("off")
fig.tight_layout()
with BytesIO() as buf:
fig.savefig(buf, format="raw", dpi=dpi, transparent=transparent)
plt.close()
arr = np.frombuffer(buf.getvalue(), np.uint8).reshape((int(fig.bbox.bounds[3]), int(fig.bbox.bounds[2]), -1))
tensor = torch.tensor(arr).permute(2, 0, 1) / 255
tensor[:3] = tensor[:3] * 2 - 1
return tensor if transparent else tensor[:3]
def _alpha_blend(surface, overlay):
surface[:] = (1 - overlay[3]) * surface + overlay[3] * overlay[:3]
def _prepare_image(img):
return ((img + 1) / 2).clamp(0, 1).permute(1, 2, 0).numpy(force=True)
def _write_image(file, img):
file.parent.mkdir(parents=True, exist_ok=True)
iio.imwrite(file, (img * 255).astype(np.uint8), quality=90)
def arg_or(default):
return sys.argv[2] if len(sys.argv) > 2 else default
def args_or(default):
return sys.argv[2:] if len(sys.argv) > 2 else default
if __name__ == "__main__":
globals()[sys.argv[1]]()