-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
162 lines (136 loc) · 5.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys
import time
import pickle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.cluster import KMeans
from sklearn.model_selection import GridSearchCV
from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier
import Indicators as ind
from Stock import Stock
num_clusters = 5
nxt_day_predict = 7
db_dir = 'db'
extraRandomTree = True
ind_dict = {
'SMA': ind.SMA, # (df, n)
'EMA': ind.EMA, # (df, n)
'MOM': ind.MOM, # (df, n)
'ROC': ind.ROC, # (df, n)
'ATR': ind.ATR, # (df, n)
'BBANDS': ind.BBANDS, # (df, n, multiplier, middle)
'PPSR': ind.PPSR, # (df)
'PPSRFIBO': ind.PPSRFIBO, # (df)
'STOK': ind.STOK, # (df)
'STO': ind.STO, # (df, n)
'TRIX': ind.TRIX, # (df, n)
'ADX': ind.ADX, # (df, n, n_ADX)
'MACD': ind.MACD, # (df, n_fast, n_slow)
'MASS': ind.MASS, # (df)
'VORTEX': ind.VORTEX, # (df, n)
'KST': ind.KST, # (df, r1, r2, r3, r4, n1, n2, n3, n4)
'RSI': ind.RSI, # (df, n)
'TSI': ind.TSI, # (df, r, s)
'ACCDIST': ind.ACCDIST, # (df, n)
'CHAIKIN': ind.CHAIKIN, # (df)
'MFI': ind.MFI, # (df, n)
'OBV': ind.OBV, # (df, n)
'FORCE': ind.FORCE, # (df, n)
'EOM': ind.EOM, # (df, n)
'CCI': ind.CCI, # (df, n)
'COPP': ind.COPP, # (df, n)
'KELCH': ind.KELCH, # (df, n)
'DONCH': ind.DONCH, # (df, n)
'ULTOSC': ind.ULTOSC # (df)
}
if extraRandomTree:
ind_funcs_params = []
with open('db/FeaturesTest.txt', 'r') as f:
for line in f:
line = line.split(',')
if len(line) == 1:
ind_funcs_params.append([ind_dict[line[0][:-1]], None])
else:
params = line[1].split()
params = map(int, params)
ind_funcs_params.append([ind_dict[line[0]], tuple(params)])
def gridSearchEstimators(stock):
for stockSVM in stock.stockSVMs:
if stockSVM.clf is not None:
print("Best estimators: C = {0} gamma = {1}"
.format(stockSVM.clf.best_estimator_.C, stockSVM.clf.best_estimator_.gamma))
def trainScore(stock, labels_test):
preds = []
for k, lab in enumerate(labels_test):
preds.append(int(stock.predict_SVM(lab, stock.test[k:k+1])))
res_preds_comp = [k == w for k, w in zip(stock.test_pred, preds)]
preds2 = preds.copy()
test_pred2 = stock.test_pred.copy()
l = len(preds)
print("{0} days : {1:.5f}%".format(0, sum(res_preds_comp)/l))
for d in range(1, nxt_day_predict+3):
preds.append(preds.pop(0))
res_preds_comp = [k == w for k, w in zip(stock.test_pred, preds)]
print("{0} days : {1:.5f}%".format(d, sum(res_preds_comp)/l))
print()
res_preds_comp = [k == w for k, w in zip(test_pred2, preds2)]
print("{0} days : {1:.5f}%".format(0, sum(res_preds_comp)/l))
for d in range(1, nxt_day_predict+3):
preds2.pop(0)
test_pred2.pop(-1)
l = len(test_pred2)
res_preds_comp = [k == w for k, w in zip(test_pred2, preds2)]
print("{0} days : {1:.5f}%".format(d, sum(res_preds_comp)/l))
print()
def plotStock(stock, _gridSearch_, _train_test_data_, labels_test=None):
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=1, colspan=1)
ax2 = plt.subplot2grid((3, 1), (1, 0), rowspan=1, colspan=1, sharex=ax1)
ax3 = plt.subplot2grid((3, 1), (2, 0), rowspan=1, colspan=1, sharex=ax1)
ax1.scatter(range(len(stock.df.index)),
stock.df['Close'], c=stock.df['labels_kmeans'])
ax2.scatter(range(len(stock.df.index)),
stock.df['Close'], c=stock.df['labels'])
ax3.scatter(range(len(stock.df.index)),
stock.df['Close'], c=stock.df['labels'])
if _gridSearch_ and _train_test_data_:
ax3.scatter(range(len(stock.df.index), len(stock.df.index) +
len(stock.test.index)), stock.test['Close'], c=labels_test)
plt.show()
_gridSearch_ = True
_train_test_data_ = True
C_range = [2e-5*100**k for k in range(5)]
gamma_range = [2e-15*100**k for k in range(5)]
if __name__ == "__main__":
ticker = 'ZTS'
stock = Stock(ticker, considerOHL=False,
train_test_data=_train_test_data_, train_size=0.8)
stock.applyIndicators(ind_funcs_params)
stock.applyExtraTreesClassifier(nxt_day_predict)
stock.fit_kSVMeans(num_clusters=4,
classifier=None,
random_state_kmeans=None,
random_state_clf=None,
consistent_clusters_kmeans=False,
consistent_clusters_multiclass=False,
extraTreesClf=True,
predictNext_k_day=nxt_day_predict,
extraTreesFirst=1,
verbose=True)
print("Init fit")
t = time.time()
stock.fit(predictNext_k_day=nxt_day_predict,
fit_type='gridsearch',
C=2e3,
gamma=2e-15,
parameters={'C': np.array(C_range), 'gamma': np.array(gamma_range)}, k_fold_num=3)
print(time.time() - t)
if _gridSearch_:
gridSearchEstimators(stock)
print()
labels_test = None
if _train_test_data_:
labels_test = stock.predict_SVM_Cluster(stock.test)
trainScore(stock, labels_test)
plotStock(stock, _gridSearch_, _train_test_data_, labels_test)