You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
J'avais ajouté quelques info pour le readme, puis je me suis rappeler que tu as un wiki. J'ai vu que tu avais déjà fais les sections que j'ai documenté, mais je te fournis ce que j'avais fais si jamais il y a des choses qui manquent dans le wiki. J'aurai peut-être le temps bientôt de le faire moi-même si ça presse pas, mais je laisse ça ici en attendant pour pas l'ajouter dans mon pull request pour ce que j'ai modifié.
Machine learning
Training data filenames
The data files should be named like this:
Training arguments
experiment_name: n_features: controls the number of features to be used for training. Only use in combination with use_mi or for debugging.
Neptune usage
Users are recommended to use neptune.ai in order to track the results of all the models trained during hyperparameters optimization.
If not using neptune, only the results from the best model are going to be saved
Results
All the results are saved in the folder results, which is created automatically when training the first model. results/{exp_name}_{n_features}features_mi{is_mi}/ <br>
where exp_name is the experiment name, n_features is the number of features used (the default value is -1, which uses all features). The parameter is_mi controls <br>
The following results are created: <br>
Best model
The best model weights, best hyperparameters and scores are saved in results/{exp_name}_{n_features}features_mi{is_mi}/confusion_matrix/
Confusion matrices
The confusion matrices of the best model are saved in results/{exp_name}_{n_features}features_mi{is_mi}/confusion_matrix/.
Three confusion matrices are saved for the train, valid and test sets. Each confusion matrices is saved in two formats: csv and png.
Data visualization plots
All ordination plots for visualization are in results/{exp_name}_{n_features}features_mi{is_mi}/ord/. It includes:
MultiDimentional Scaling (MDS)
Principal Components Analysis (PCA)
Fisher's Linear Discriminant Analysis (LDA)
Uniform Manifold Approximation and Projection (UMAP)
Histograms
Four different histograms are saved in results/{exp_name}_{n_features}features_mi{is_mi}/histograms/. <br>
The first histogram allclasses.png represents the distribution of values in the outputs from your best model, using 30 bins. The x-axis indicates the output values, and the y-axis represents the frequency of those values. <br>
The histogram zeros_per_feature_allclasses.png illustrates the distribution of zeros across the features in the dataset. The x-axis represents the number of zeros per feature, while the y-axis indicates the count of features that fall within each range of zeros. <br>
The histogram zeros_per_feature_allclasses.png illustrates the distribution of zeros across the samples in the dataset. The x-axis represents the number of zeros per sample, while the y-axis indicates the count of features that fall within each range of zeros. <br>
If using the option use_mi, the figure mutual_info_gain.png is saved.
The text was updated successfully, but these errors were encountered:
J'avais ajouté quelques info pour le readme, puis je me suis rappeler que tu as un wiki. J'ai vu que tu avais déjà fais les sections que j'ai documenté, mais je te fournis ce que j'avais fais si jamais il y a des choses qui manquent dans le wiki. J'aurai peut-être le temps bientôt de le faire moi-même si ça presse pas, mais je laisse ça ici en attendant pour pas l'ajouter dans mon pull request pour ce que j'ai modifié.
Machine learning
Training data filenames
The data files should be named like this:
Training arguments
experiment_name
:n_features
: controls the number of features to be used for training. Only use in combination withuse_mi
or for debugging.Neptune usage
Users are recommended to use neptune.ai in order to track the results of all the models trained during hyperparameters optimization.
If not using neptune, only the results from the best model are going to be saved
Results
All the results are saved in the folder
results
, which is created automatically when training the first model.results/{exp_name}_{n_features}features_mi{is_mi}/
<br>where
exp_name
is the experiment name,n_features
is the number of features used (the default value is -1, which uses all features). The parameteris_mi
controls <br>The following results are created: <br>
Best model
The best model weights, best hyperparameters and scores are saved in
results/{exp_name}_{n_features}features_mi{is_mi}/confusion_matrix/
Confusion matrices
The confusion matrices of the best model are saved in
results/{exp_name}_{n_features}features_mi{is_mi}/confusion_matrix/
.Three confusion matrices are saved for the
train
,valid
andtest
sets. Each confusion matrices is saved in two formats:csv
andpng
.Data visualization plots
All ordination plots for visualization are in
results/{exp_name}_{n_features}features_mi{is_mi}/ord/
. It includes:Histograms
Four different histograms are saved in
results/{exp_name}_{n_features}features_mi{is_mi}/histograms/
. <br>The first histogram
allclasses.png
represents the distribution of values in the outputs from your best model, using 30 bins. The x-axis indicates the output values, and the y-axis represents the frequency of those values. <br>The
histogram zeros_per_feature_allclasses.png
illustrates the distribution of zeros across the features in the dataset. The x-axis represents the number of zeros per feature, while the y-axis indicates the count of features that fall within each range of zeros. <br>The
histogram zeros_per_feature_allclasses.png
illustrates the distribution of zeros across the samples in the dataset. The x-axis represents the number of zeros per sample, while the y-axis indicates the count of features that fall within each range of zeros. <br>If using the option
use_mi
, the figuremutual_info_gain.png
is saved.The text was updated successfully, but these errors were encountered: