Skip to content

Latest commit

 

History

History
117 lines (84 loc) · 4.24 KB

README.md

File metadata and controls

117 lines (84 loc) · 4.24 KB

OpenSeq2Seq: multi-gpu sequence to sequence learning

This is a research project, not an official NVIDIA product.

Getting started

Requirements

  • Python 3.6
  • Tensorflow r1.2 or r1.3 (with GPU support)
  • NLTK v3.2.3+

Unit tests

Checkout the code and make sure the following test pass: You should see OK after each test

./create_toy_data.sh
python -m unittest test/data_layer_tests.py
python -m unittest test/model_tests.py

Example run on toy data

When you execute ./create_toy_data.sh script, it will create the following toy data:

  • Source: random sequence of numbers

  • Target: reversed source sequence

The task is to learn to reverse randomly generated sequences. You can test single or multi-gpu training.

Single GPU:

$ python run.py --config=example_configs/toy_data_config.json --mode=train --logdir=ModelAndLogFolder
  • You can monitor training progress with Tensorboard: tensorboard --logdir=ModelAndLogFolder

Multi-GPU:

We follow data parallel approach for training. Each GPU receives a full copy of the model and its own mini-batch of data.

To start multi-GPU training, set "num_gpus" parameter in the model config accordingly.

The "batch_size" parameter specifies batch size per GPU. Hence, global (or algorithmic) batch size will be equal to "num_gpus" * "batch_size"

example_configs/toy_data_config_2GPUs.json shows how to use the multi-gpu case

$ python run.py --config=example_configs/toy_data_config_2GPUs.json --mode=train --logdir=ModelAndLogFolder

This will begin the training process and save the checkpoints to the ModelAndLogFolder directory

Example inference

Once the model has been trained and saved in ModelAndLogFolder, run:

$ python run.py --config=example_configs/toy_data_config_2GPUs.json --mode=infer --logdir=ModelAndLogFolder --inference_out=pred.txt

BLEU Score Calculation using Moses Script

$ ./multi-bleu.perl test/toy_data/test/target.txt < pred.txt

If you just used the provided configs, your BLUE score should be > 98 for both single and 2 gpu runs of the toy task.

Training German to English translation

First, get the data:

Download and execute this script

Edit the 'nmt.json' file and replace [WMT16_DATA_LOCATION] with correct data location.

Run training

Edit "num_gpus" section of nmt.json - set it to the number of GPUs you want to use.

python run.py --config_file=example_configs/nmt.json --logdir=nmt --checkpoint_frequency=2000 --summary_frequency=50 --eval_frequency=1000
  • If you are getting OOM exceptions try decreasing batch_size parameter in nmt.json

Run Inference

python run.py --config_file=example_configs/nmt.json --logdir=nmt --mode=infer --inference_out=wmt_pred.txt

Before we calculate the BLEU score, we must remove the BPE segmentations from the translated outputs.

Clean wmt_pred.txt and newstest2015.tok.bpe.32000.en from BPE segmentation

Cleaning BPE segmentation

$ cat {file_with_BPE_segmentation} | sed -r 's/(@@ )|(@@ ?$)//g' > {cleaned_file}

Run multi-blue.perl script on cleaned data.

$ ./multi-bleu.perl cleaned_newstest2015.tok.bpe.32000.en < cleaned_wmt_pred.txt

For this example config you should get BLEU score around 22.66.

On a single Quadro GP100 (16GB) it takes around 24 hours (4 epochs) to get this result.

Train longer (and/or using more GPUs) to get better results.

Authors

Oleksii Kuchaiev and Siddharth Bhatnagar (internship work at NVIDIA)

Contributions are welcome!

Related resources

References