-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathnode_classifier.py
274 lines (249 loc) · 15.9 KB
/
node_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""This model shows an example of using dgl.metapath_reachable_graph on the original heterogeneous
graph.
Because the original HAN implementation only gives the preprocessed homogeneous graph, this model
could not reproduce the result in HAN as they did not provide the preprocessing code, and we
constructed another dataset from ACM with a different set of papers, connections, features and
labels.
"""
from ast import arg
import os
from shutil import rmtree
import torch
import networkx as nx
from sklearn.model_selection import KFold
from sco_models.model_hetero import MANDOGraphClassifier
from sco_models.model_node_classification import MANDONodeClassifier
from sco_models.model_hgt import HGTVulNodeClassifier
from sco_models.utils import score, get_classification_report, get_confusion_matrix, dump_result
from sco_models.visualization import visualize_average_k_folds
def get_binary_mask(total_size, indices):
mask = torch.zeros(total_size)
mask[indices] = 1
return mask.byte()
def get_node_ids(graph, source_files):
file_ids = []
for node_ids, node_data in graph.nodes(data=True):
filename = node_data['source_file']
if filename in source_files:
file_ids.append(node_ids)
return file_ids
def main(args):
epochs = args['num_epochs']
k_folds = args['k_folds']
device = args['device']
# kfold = KFold(n_splits=k_folds, shuffle=True)
train_results = {}
val_results = {}
# Get feature extractor
print('Getting features')
if args['node_feature'] == 'han':
feature_extractor = MANDONodeClassifier(args['feature_compressed_graph'], feature_extractor=args['cfg_feature_extractor'], node_feature='gae', device=args['device'])
feature_extractor.load_state_dict(torch.load(args['feature_extractor']))
feature_extractor.to(args['device'])
feature_extractor.eval()
else:
feature_extractor = args['feature_extractor']
nx_graph = nx.read_gpickle(args['compressed_graph'])
number_of_nodes = len(nx_graph)
model = MANDONodeClassifier(args['compressed_graph'], feature_extractor=feature_extractor, node_feature=args['node_feature'], device=device)
total_train_files = [f for f in os.listdir(args['dataset']) if f.endswith('.sol')]
total_test_files = [f for f in os.listdir(args['testset']) if f.endswith('.sol')]
total_train_files = list(set(total_train_files).difference(set(total_test_files)))
# clean_smart_contract = './ge-sc-data/smartbugs_wild/clean_50'
# total_clean_files = [f for f in os.listdir(clean_smart_contract) if f.endswith('.sol')]
total_clean_files = []
total_train_files = list(set(total_train_files).difference(set(total_clean_files)))
# Train valid split data
train_rate = 0.9
val_rate = 0.05
rand_train_ids = torch.randperm(len(total_train_files)).tolist()
rand_test_ids = torch.randperm(len(total_test_files)).tolist()
rand_clean_ids = torch.randperm(len(total_clean_files)).tolist()
train_size_0 = int(train_rate * len(total_train_files))
train_size_1 = int(train_rate * len(total_test_files))
train_size_2 = int(train_rate * len(total_clean_files))
train_files = [total_train_files[i] for i in rand_train_ids[:train_size_0]] + \
[total_test_files[i] for i in rand_test_ids[:train_size_1]] + \
[total_clean_files[i] for i in rand_clean_ids[:train_size_2]]
print('Buggy train files: ', [total_train_files[i] for i in rand_train_ids[:train_size_0]])
print('Curated train files: ', [total_test_files[i] for i in rand_test_ids[:train_size_1]])
val_size_0 = int(val_rate * len(total_train_files))
val_size_1 = int(val_rate * len(total_test_files))
val_size_2 = int(val_rate * len(total_clean_files))
val_files = [total_train_files[i] for i in rand_train_ids[train_size_0:train_size_0 + val_size_0]] + \
[total_test_files[i] for i in rand_test_ids[train_size_1:train_size_1 + val_size_1]] + \
[total_clean_files[i] for i in rand_clean_ids[train_size_2:train_size_2 + val_size_2]]
print('Buggy valid files: ', [total_train_files[i] for i in rand_train_ids[train_size_0:train_size_0 + val_size_0]])
print('Curated valid files: ', [total_test_files[i] for i in rand_test_ids[train_size_1:train_size_1 + val_size_1]])
test_files = [total_train_files[i] for i in rand_train_ids[train_size_0 + val_size_0:]] + \
[total_test_files[i] for i in rand_test_ids[train_size_1 + val_size_1:]] + \
[total_clean_files[i] for i in rand_clean_ids[train_size_2 + val_size_2:]]
print('Buggy test files: ', [total_train_files[i] for i in rand_train_ids[train_size_0 + val_size_0:]])
print('Curated test files: ', [total_test_files[i] for i in rand_test_ids[train_size_1 + val_size_1:]])
assert len(train_files) + len(val_files) + len(test_files) == len(total_train_files) + len(total_test_files) + len(total_clean_files)
print('Label dict: ', model.label_ids)
print(f'Number of source code for Buggy/Curated: {len(total_train_files)}/{len(total_test_files)}')
total_train_ids = get_node_ids(nx_graph, total_train_files)
train_ids = get_node_ids(nx_graph, train_files)
val_ids = get_node_ids(nx_graph, val_files)
test_ids = get_node_ids(nx_graph, test_files)
targets = torch.tensor(model.node_labels, device=args['device'])
assert len(set(train_ids) | set(val_ids) | set(test_ids)) == len(targets)
buggy_node_ids = torch.nonzero(targets).squeeze().tolist()
print('Buggy node {}/{} ({}%)'.format(len(set(buggy_node_ids)), len(targets), 100*len(set(buggy_node_ids))/len(targets)))
# for fold, (train_ids, val_ids) in enumerate(kfold.split(total_train_ids)):
# Init model
fold = 0
model.reset_parameters()
model.to(device)
train_results[fold] = {'loss': [], 'acc': [], 'micro_f1': [], 'macro_f1': [], 'buggy_f1': [], 'lrs': []}
val_results[fold] = {'loss': [], 'acc': [], 'micro_f1': [], 'macro_f1': [], 'buggy_f1': []}
train_buggy_node_ids = set(buggy_node_ids).intersection(set(train_ids))
print('Buggy nodes in train: {}/{} ({}%)'.format(len(train_buggy_node_ids), len(train_ids), 100*len(train_buggy_node_ids)/len(train_ids)))
val_buggy_node_ids = set(buggy_node_ids).intersection(set(val_ids))
print('Buggy nodes in valid: {}/{} ({}%)'.format(len(val_buggy_node_ids), len(val_ids), 100*len(val_buggy_node_ids)/len(val_ids)))
test_buggy_node_ids =set(buggy_node_ids).intersection(set(test_ids))
print('Buggy nodes in test: {}/{} ({}%)'.format(len(test_buggy_node_ids), len(test_ids), 100*len(test_buggy_node_ids)/len(test_ids)))
print('Start training fold {} with {}/{} train/val smart contracts'.format(fold, len(train_ids), len(val_ids)))
total_steps = epochs
# class_counter = [len(labeled_node_ids['valid']), len(labeled_node_ids['buggy'])]
# class_weight = torch.tensor([1 - sample/len(class_counter) for sample in class_counter], requires_grad=False).to(args['device'])
# Don't record the following operation in autograd
# with torch.no_grad():
# loss_weights.copy_(initial_weights)
loss_fcn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.005, total_steps=total_steps)
train_mask = get_binary_mask(number_of_nodes, train_ids)
val_mask = get_binary_mask(number_of_nodes, val_ids)
test_mask = get_binary_mask(number_of_nodes, test_ids)
if hasattr(torch, 'BoolTensor'):
train_mask = train_mask.bool()
val_mask = val_mask.bool()
test_mask = test_mask.bool()
retain_graph = True if args['node_feature'] == 'han' else False
for epoch in range(epochs):
print('Fold {} - Epochs {}'.format(fold, epoch))
optimizer.zero_grad()
logits = model()
logits = logits.to(args['device'])
train_loss = loss_fcn(logits[train_mask], targets[train_mask])
train_loss.backward(retain_graph=retain_graph)
optimizer.step()
scheduler.step()
train_acc, train_micro_f1, train_macro_f1, train_buggy_f1 = score(targets[train_mask], logits[train_mask])
# print('Train Loss: {:.4f} | Train Micro f1: {:.4f} | Train Macro f1: {:.4f} | Train Accuracy: {:.4f}'.format(
# train_loss.item(), train_micro_f1, train_macro_f1, train_acc))
val_loss = loss_fcn(logits[val_mask], targets[val_mask])
val_acc, val_micro_f1, val_macro_f1, val_buggy_f1 = score(targets[val_mask], logits[val_mask])
print('Val Loss: {:.4f} | Val Micro f1: {:.4f} | Val Macro f1: {:.4f} | Val Accuracy: {:.4f}'.format(
val_loss.item(), val_micro_f1, val_macro_f1, val_acc))
train_results[fold]['loss'].append(train_loss)
train_results[fold]['micro_f1'].append(train_micro_f1)
train_results[fold]['macro_f1'].append(train_macro_f1)
train_results[fold]['buggy_f1'].append(train_buggy_f1)
train_results[fold]['acc'].append(train_acc)
train_results[fold]['lrs'] += scheduler.get_last_lr()
val_results[fold]['loss'].append(val_loss)
val_results[fold]['micro_f1'].append(val_micro_f1)
val_results[fold]['macro_f1'].append(val_macro_f1)
val_results[fold]['buggy_f1'].append(val_buggy_f1)
val_results[fold]['acc'].append(val_acc)
print('Saving model fold {}'.format(fold))
# dump_result(targets[val_mask], logits[val_mask], os.path.join(args['output_models'], f'confusion_{fold}.csv'))
# save_path = os.path.join(args['output_models'])
# torch.save(model.state_dict(), save_path)
torch.save(model.state_dict(), args['output_models'])
print('Testing phase')
print(f'Testing on {len(test_ids)} nodes')
model.eval()
with torch.no_grad():
logits = model()
logits = logits.to(args['device'])
test_acc, test_micro_f1, test_macro_f1, test_buggy_f1 = score(targets[test_mask], logits[test_mask])
print('Test Micro f1: {:.4f} | Test Macro f1: {:.4f} | Test Accuracy: {:.4f}'.format(test_micro_f1, test_macro_f1, test_acc))
print('Classification report', '\n', get_classification_report(targets[test_mask], logits[test_mask]))
print('Confusion matrix', '\n', get_confusion_matrix(targets[test_mask], logits[test_mask]))
return train_results, val_results
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser('MANDO Node Classifier')
parser.add_argument('-s', '--seed', type=int, default=1,
help='Random seed')
archive_params = parser.add_argument_group(title='Storage', description='Directories for util results')
archive_params.add_argument('-ld', '--log_dir', type=str, default='./logs/node_classification', help='Directory for saving training logs and visualization')
archive_params.add_argument('--output_models', type=str, default='./models/call_graph_rgcn',
help='Where you want to save your models')
dataset_params = parser.add_argument_group(title='Dataset', description='Dataset paths')
dataset_params.add_argument('--compressed_graph', type=str, default='./dataset/call_graph/compressed_graph/compress_call_graphs_no_solidity_calls.gpickle',
help='Compressed graphs of dataset which was extracted by graph helper tools')
dataset_params.add_argument('--dataset', type=str, default='./dataset/aggregate/source_code',
help='Dicrectory of all souce code files which were used to extract the compressed graph')
dataset_params.add_argument('--testset', type=str, default='./dataset/smartbugs/source_code',
help='Dicrectory of all souce code files which is a partition of the dataset for testing')
node_feature_params = parser.add_argument_group(title='Node feature', description='Define the way to get node features')
node_feature_params.add_argument('--feature_compressed_graph', type=str, default='./dataset/aggregate/compressed_graph/compressed_graphs.gpickle',
help='If "node_feature" is han, you mean use 2 HAN layers. The first one is HAN of CFGs as feature node for the second HAN of call graph, This is the compressed graphs were trained for the first HAN')
node_feature_params.add_argument('--cfg_feature_extractor', type=str, default='./models/metapath2vec_cfg/han_fold_1.pth',
help='If "node_feature" is han, feature_extractor is a checkpoint of the first HAN layer')
node_feature_params.add_argument('--feature_extractor', type=str, default='./models/metapath2vec_cfg/han_fold_1.pth',
help='If "node_feature" is "GAE" or "LINE" or "Node2vec", we need a extracted features from those models')
node_feature_params.add_argument('--node_feature', type=str, default='metapath2vec',
help='Kind of node features we want to use, here is one of "nodetype", "metapath2vec", "han", "gae", "line", "node2vec"')
train_option_params = parser.add_argument_group(title='Optional configures', description='Advanced options')
train_option_params.add_argument('--k_folds', type=int, default=1, help='Config for cross validate strategy')
train_option_params.add_argument('--test', action='store_true', help='Set true if you only want to run test phase')
train_option_params.add_argument('--non_visualize', action='store_true',
help='Wheather you want to visualize the metrics')
args = parser.parse_args().__dict__
default_configure = {
'lr': 0.0002, # Learning rate
'num_heads': 8, # Number of attention heads for node-level attention
'hidden_units': 8,
'dropout': 0.6,
'weight_decay': 0.001,
'num_epochs': 200,
'batch_size': 256,
'patience': 100,
'device': 'cuda:0' if torch.cuda.is_available() else 'cpu',
}
args.update(default_configure)
torch.manual_seed(args['seed'])
# if not os.path.exists(args['output_models']):
# os.makedirs(args['output_models'])
# Training
if not args['test']:
print('Training phase')
train_results, val_results = main(args)
if not args['non_visualize']:
print('Visualizing')
if os.path.exists(args['log_dir']):
rmtree(args['log_dir'])
visualize_average_k_folds(args, train_results, val_results)
# Testing
else:
print('Testing phase')
nx_graph = nx.read_gpickle(args['compressed_graph'])
number_of_nodes = len(nx_graph)
test_files = [f for f in os.listdir(args['testset']) if f.endswith('.sol')]
model = MANDONodeClassifier(args['compressed_graph'], feature_extractor=None, node_feature=args['node_feature'], device=args['device'])
model.load_state_dict(torch.load(args['feature_extractor']))
model.eval()
model.to(args['device'])
test_ids = get_node_ids(nx_graph, test_files)
targets = torch.tensor(model.node_labels, device=args['device'])
buggy_node_ids = torch.nonzero(targets).squeeze().tolist()
test_buggy_node_ids = set(buggy_node_ids) & set(test_ids)
print('Buggy nodes in test: {}/{} ({}%)'.format(len(test_buggy_node_ids), len(test_ids), 100*len(test_buggy_node_ids)/len(test_ids)))
test_mask = get_binary_mask(number_of_nodes, test_ids)
if hasattr(torch, 'BoolTensor'):
test_mask = test_mask.bool()
print(f"Testing on {len(test_ids)} nodes")
with torch.no_grad():
logits = model()
logits = logits.to(args['device'])
print(torch.nonzero(targets, as_tuple=True)[0].shape)
test_acc, test_micro_f1, test_macro_f1 = score(targets[test_mask], logits[test_mask])
print('Test Micro f1: {:.4f} | Test Macro f1: {:.4f} | Test Accuracy: {:.4f}'.format(test_micro_f1, test_macro_f1, test_acc))
print('Classification report', '\n', get_classification_report(targets[test_mask], logits[test_mask]))
print('Confusion matrix', '\n', get_confusion_matrix(targets[test_mask], logits[test_mask]))