First, please prepare standard datasets for evaluation and training.
We present most of prevailing datasets in video frame interpolation, though some are not used in our project. Hope this collection could help your research.
Dataset | 🔗 Source | Train/Eval | Arbitrary/Fixed |
---|---|---|---|
Vimeo90k | ToFlow (IJCV 2019) | Both | Fixed |
ATD-12K | AnimeInterp (CVPR 2021) | Both | Fixed |
SNU-FILM | CAIN (AAAI 2021) | Eval | Fixed |
UCF101 | Google Driver | Eval | Fixed |
HD | MEMC-Net (TPAMI 2018)/Google Driver | Eval | Fixed |
Xiph-2k/-4k | SoftSplat (CVPR 2020) | Eval | Fixed |
MiddleBury | MiddleBury | Eval | Fixed |
GoPro | GoPro | Both | Arbitrary |
Adobe240fps | DBN (CVPR 2017) | Both | Arbitrary |
X4K1000FPS | XVFI (ICCV 2021) | Both | Arbitrary |
Dataset | 🔗 Download Links | Config file | Trained on | Arbitrary/Fixed |
---|---|---|---|---|
AMT-S | [Google Driver][Baidu Cloud] | [cfgs/AMT-S] | Vimeo90k | Fixed |
AMT-L | [Google Driver][Baidu Cloud] | [cfgs/AMT-L] | Vimeo90k | Fixed |
AMT-G | [Google Driver][Baidu Cloud] | [cfgs/AMT-G] | Vimeo90k | Fixed |
AMT-S | [Google Driver][Baidu Cloud] | [cfgs/AMT-S_gopro] | GoPro | Arbitrary |
Before evaluation, you should:
- Check the dataroot is organized as follows:
./data
├── Adobe240
│ ├── original_high_fps_videos
│ └── test_frames # using ffmpeg to extract 240 fps frames from `original_high_fps_videos`
├── GOPRO
│ ├── test
│ └── train
├── SNU_FILM
│ ├── GOPRO_test
│ ├── test-easy.txt
│ ├── test-extreme.txt
│ ├── test-hard.txt
│ ├── test-medium.txt
│ └── YouTube_test
├── ucf101_interp_ours
│ ├── 1
│ ├── 1001
│ └── ...
└── vimeo_triplet
├── readme.txt
├── sequences
├── tri_testlist.txt
└── tri_trainlist.txt
- Download the provided pretrained models.
Then, you can perform evaluation as follows:
-
Run all benchmarks for fixed-time models.
sh ./scripts/benchmark_fixed.sh [CFG] [CKPT_PATH] ## e.g. sh ./scripts/benchmark_fixed.sh cfgs/AMT-S.yaml pretrained/amt-s.pth
-
Run all benchmarks for arbitrary-time models.
sh ./scripts/benchmark_arbitrary.sh [CFG] [CKPT_PATH] ## e.g. sh ./scripts/benchmark_arbitrary.sh cfgs/AMT-S.yaml pretrained/gopro_amt-s.pth
-
Run a single benchmark for fixed-time models. You can custom data paths in this case.
python [BENCHMARK] -c [CFG] -p [CKPT_PATH] -r [DATAROOT] ## e.g. python benchmarks/vimeo90k.py -c cfgs/AMT-S.yaml -p pretrained/amt-s.pth -r data/vimeo_triplet
-
Run the inference speed & model size comparisons using:
python speed_parameters.py -c [CFG] ## e.g. python speed_parameters.py -c cfgs/AMT-S.yaml
Before training, please first prepare the optical flows (which are used for supervision).
We need to install cupy
first before flow generation:
conda activate amt # satisfying `requirement.txt`
conda install -c conda-forge cupy
After installing cupy
, we can generate optical flows by the following command:
python flow_generation/gen_flow.py -r [DATA_ROOT]
## e.g.
python flow_generation/gen_flow.py -r data/vimeo_triplet
After obtaining the optical flow of the training data, run the following commands for training (DDP mode):
sh ./scripts/train.sh [NUM_GPU] [CFG] [MASTER_PORT]
## e.g.
sh ./scripts/train.sh 2 cfgs/AMT-S.yaml 14514
Our training configuration files are provided in cfgs
. Please carefully check the dataset_dir
is suitable for you.
Note:
-
If you intend to turn off DDP training, you can switch the key
distributed
fromtrue
tofalse
in the config file. -
If you do not use wandb, you can switch the key
logger.use_wandb
fromtrue
tofalse
in the config file.