-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDeepDOF_step1.py
437 lines (336 loc) · 16.5 KB
/
DeepDOF_step1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# End-to-end optimization for EDOF
# Author: Yicheng Wu @ Rice University
# 03/29/2019
# 04/12/2019 parameter update
# 11/7/2019 update best model with valid_loss
# 12/3/2019 update best model with valid_rms instead of valid_loss
# 12/3/2019 update reblur cost = rms(blur, reblur)
import tensorflow as tf
import scipy.io as sio
import numpy as np
import os
import Network
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # only uses GPU 1
results_dir = "./results/"
DATA_PATH = "./DATA/"
TFRECORD_TRAIN_PATH = [DATA_PATH + 'npo_720um_train.tfrecords'] # for testing purpose both are validation sets
TFRECORD_VALID_PATH = [DATA_PATH + 'npo_720um_train.tfrecords']
## optimizer learning rates
# use 0 in step 1:
lr_optical = 0
# use 1e-9 in step 2:
# lr_optical = 1e-9
lr_digital = 1e-4
print('lr_optical:' + str(lr_optical))
print('lr_digital:' + str(lr_digital))
########################################## Functions #############################################
# Peak SNR, could be used as cost function
def tf_PSNR(a, b, max_val, name=None):
with tf.name_scope(name, 'PSNR', [a, b]):
# Need to convert the images to float32. Scale max_val accordingly so that
# PSNR is computed correctly.
max_val = tf.cast(max_val, tf.float32)
a = tf.cast(a, tf.float32)
b = tf.cast(b, tf.float32)
mse = tf.reduce_mean(tf.squared_difference(a, b), [-3, -2, -1])
psnr_val = tf.subtract(
20 * tf.log(max_val) / tf.log(10.0),
np.float32(10 / np.log(10)) * tf.log(mse),
name='psnr')
return psnr_val
####### read from the TFRECORD format #################
## for faster reading from Hard disk
def read_tfrecord(TFRECORD_PATH):
# from tfrecord file to data
N_w = 1000 # size of the images
N_h = 1000
queue = tf.train.string_input_producer(TFRECORD_PATH, shuffle=True)
reader = tf.TFRecordReader()
_, serialized_example = reader.read(queue)
features = tf.parse_single_example(serialized_example,
features={
'sharp': tf.FixedLenFeature([], tf.string),
})
RGB_flat = tf.decode_raw(features['sharp'], tf.uint8)
RGB = tf.reshape(RGB_flat, [N_h, N_w, 1])
return RGB
########## Preprocess the images #############
## crop to patches
## random flip
## Add uniform noise
############################################
def data_augment(RGB_batch_float):
# crop to N_raw x N_raw
N_raw = 326 # for boundary effect, 256+70, will need cropping after convolution
data1 = tf.map_fn(lambda img: tf.random_crop(img, [N_raw, N_raw, 1]), RGB_batch_float)
# flip both images and labels
data2 = tf.map_fn(lambda img: tf.image.random_flip_up_down(tf.image.random_flip_left_right(img)), data1)
# only adjust the RGB value of the image
r1 = tf.random_uniform([]) * 0.3 + 0.8
RGB_out = data2 * r1
return RGB_out
############ Put data in batches #############
## put in batch and shuffle
## cast to float32
## call data_augment for image preprocess
## @param{TFRECORD_PATH}: path to the data
## @param{batchsize}: currently 21 for the 21 PSFs
##############################################
def read2batch(TFRECORD_PATH, batchsize):
# load tfrecord and make them to be usable data
RGB = read_tfrecord(TFRECORD_PATH)
RGB_batch = tf.train.shuffle_batch([RGB], batch_size=batchsize, capacity=200,
min_after_dequeue=50, num_threads=5)
RGB_batch_float = tf.image.convert_image_dtype(RGB_batch, tf.float32)
RGB_batch_float = data_augment(RGB_batch_float)
return RGB_batch_float[:,:,:,0:1]
def add_gaussian_noise(images, std):
noise = tf.random_normal(shape=tf.shape(images), mean=0.0, stddev=std, dtype=tf.float32)
return tf.nn.relu(images + noise)
########### fftshift2D ###################
## the same as fftshift in MATLAB
## works for complex number
def fft2dshift(input):
dim = int(input.shape[1].value) # dimension of the data
channel1 = int(input.shape[0].value) # channels for the first dimension
if dim % 2 == 0:
# even version
# shift up and down
u = tf.slice(input, [0, 0, 0], [channel1, int((dim) / 2), dim])
d = tf.slice(input, [0, int((dim) / 2), 0], [channel1, int((dim) / 2), dim])
du = tf.concat([d, u], axis=1)
# shift left and right
l = tf.slice(du, [0, 0, 0], [channel1, dim, int((dim) / 2)])
r = tf.slice(du, [0, 0, int((dim) / 2)], [channel1, dim, int((dim) / 2)])
output = tf.concat([r, l], axis=2)
else:
# odd version
# shift up and down
u = tf.slice(input, [0, 0, 0], [channel1, int((dim + 1) / 2), dim])
d = tf.slice(input, [0, int((dim + 1) / 2), 0], [channel1, int((dim - 1) / 2), dim])
du = tf.concat([d, u], axis=1)
# shift left and right
l = tf.slice(du, [0, 0, 0], [channel1, dim, int((dim + 1) / 2)])
r = tf.slice(du, [0, 0, int((dim + 1) / 2)], [channel1, dim, int((dim - 1) / 2)])
output = tf.concat([r, l], axis=2)
return output
######### generate out-of-focus phase ###############
## @param{Phi_list}: a list of Phi values
## @param{N_B}: size of the blur kernel
## @return{OOFphase}
def gen_OOFphase(Phi_list, N_B):
# return (Phi_list,pixel,pixel,color)
N = N_B
x0 = np.linspace(-2.84, 2.84, N) # 71/25 =2.84
xx, yy = np.meshgrid(x0, x0)
OOFphase = np.empty([len(Phi_list), N, N, 1], dtype=np.float32)
for j in range(len(Phi_list)):
Phi = Phi_list[j]
OOFphase[j, :, :, 0] = Phi * (xx ** 2 + yy ** 2)
return OOFphase
################## Generates the PSFs ########################
## @param{h}: height map of the mask
## @param{OOFphase}: out-of-focus phase
## @param{wvls}: wavelength \lambda
## @param{idx}: index of the PSF
## @param{N_B}: size of the blur kernel
#################################################################
def gen_PSFs(h, OOFphase, wvls, idx, N_B):
n = 1.5 # diffractive index
with tf.variable_scope("PSFs"):
OOFphase_B = OOFphase[:, :, :, 0]
phase_B = tf.add(2 * np.pi / wvls[0] * (n - 1) * h, OOFphase_B) # phase modulation of mask (phi_M)
Pupil_B = tf.multiply(tf.complex(idx, 0.0), tf.exp(tf.complex(0.0, phase_B)), name='Pupil_B') # pupil P
Norm_B = tf.cast(N_B * N_B * np.sum(idx ** 2), tf.float32) # what's this?
PSF_B = tf.divide(tf.square(tf.abs(fft2dshift(tf.fft2d(Pupil_B)))), Norm_B, name='PSF_B')
return tf.expand_dims(PSF_B, -1)
################ blur the images using PSFs ##################
## same patch different depths put in a stack
################################################################
def one_wvl_blur(im, PSFs0):
N_B = PSFs0.shape[1].value
N_Phi = PSFs0.shape[0].value
N_im = im.shape[1].value
N_im_out = N_im - N_B + 1 # the final image size after blurring
sharp = tf.transpose(tf.reshape(im, [-1, N_Phi, N_im, N_im]),
[0, 2, 3, 1]) # reshape to make N_Phi in the last channel
PSFs = tf.expand_dims(tf.transpose(PSFs0, perm=[1, 2, 0]), -1)
blurAll = tf.nn.depthwise_conv2d(sharp, PSFs, strides=[1, 1, 1, 1], padding='VALID')
blurStack = tf.transpose(
tf.reshape(tf.transpose(blurAll, perm=[0, 3, 1, 2]), [-1, 1, N_im_out, N_im_out]),
perm=[0, 2, 3, 1]) # stack all N_Phi images to the first dimension
return blurStack
def blurImage_diffPatch_diffDepth(RGB, PSFs):
blur = one_wvl_blur(RGB[:, :, :, 0], PSFs[:, :, :, 0])
return blur
####################### system ##########################
## @param{PSFs}: the PSFs
## @param{RGB_batch_float}: patches
## @param{phase_BN}: batch normalization, True only during training
########################################################
def system(PSFs, RGB_batch_float, phase_BN=True):
with tf.variable_scope("system", reuse=tf.AUTO_REUSE):
blur = blurImage_diffPatch_diffDepth(RGB_batch_float, PSFs) # size [batch_size * N_Phi, Nx, Ny, 3]
# noise
sigma = 0.01
blur_noisy = add_gaussian_noise(blur, sigma)
RGB_hat = Network.UNet(blur_noisy, phase_BN)
return blur, RGB_hat
###################### RMS cost #############################
## @param{GT}: ground truth
## @param{hat}: reconstruction
##############################################################
def cost_rms(GT, hat):
cost = tf.sqrt(tf.reduce_mean(tf.square(GT - hat)))
return cost
########## compare the reconstruction reblured with U-net input? ############
## important for EDOF to utilize the PSF information
## @param{RGB_hat}: Unet reconstructed image
## @param{PSFs}: PSF used
## @param{blur}: all-in-focus image conv PSF
## @param{N_B}: size of blur kernel
## @return{reblur}: reconstruction blurred
## @return{cost}: l2 norm between blur_GT and reblur
##############################################################################
def cost_reblur(RGB_hat, PSFs, blur, N_B):
reblur = blurImage_diffPatch_diffDepth(RGB_hat, PSFs)
blur_GT = blur[:, int((N_B - 1) / 2):-int((N_B - 1) / 2), int((N_B - 1) / 2):-int((N_B - 1) / 2), :] #crop the patch to 256x256
cost = tf.sqrt(tf.reduce_mean(tf.square(blur_GT - reblur)))
return reblur, cost
######################################### Set parameters ###############################################
# def main():
zernike = sio.loadmat('zernike_basis_150mm.mat')
u2 = zernike['u2'] # basis of zernike poly
idx = zernike['idx']
idx = idx.astype(np.float32)
a_zernike_mat = sio.loadmat('a_zernike_cubic_150mm.mat')
a_zernike_fix = a_zernike_mat['a']
a_zernike_fix = a_zernike_fix * 4
a_zernike_fix = tf.convert_to_tensor(a_zernike_fix)
N_B = 71 # size of the blur kernel
wvls = np.array([550]) * 1e-9 # wavelength 550 nm
N_color = len(wvls)
N_modes = u2.shape[1] # load zernike modes
# generate the defocus phase
N_Phi = 21
Phi_list = np.linspace(-10, 10, N_Phi, np.float32) # defocus
OOFphase = gen_OOFphase(Phi_list, N_B) # return (N_Phi,N_B,N_B,N_color)
# baseline offset for the heightmap
c = 0
#################################### Build the architecture #####################################################
with tf.variable_scope("PSFs"):
a_zernike_learn = tf.get_variable("a_zernike_learn", [N_modes, 1], initializer=tf.zeros_initializer(),
constraint=lambda x: tf.clip_by_value(x, -wvls[0] / 2, wvls[0] / 2))
a_zernike = a_zernike_learn + a_zernike_fix # fixed cubic and learning part
g = tf.matmul(u2, a_zernike)
h = tf.nn.relu(tf.reshape(g, [N_B, N_B])+c, # c: baseline
name='heightMap') # height map of the phase mask, should be all positive
PSFs = gen_PSFs(h, OOFphase, wvls, idx, N_B) # return (N_Phi, N_B, N_B, N_color)
batch_size = N_Phi # it means that each patch is blurred at different depth. Will be an error if this is not N_Phi
RGB_batch_float = read2batch(TFRECORD_TRAIN_PATH, batch_size)
RGB_batch_float_valid = read2batch(TFRECORD_VALID_PATH, batch_size)
[blur_train, RGB_hat_train] = system(PSFs, RGB_batch_float)
[blur_valid, RGB_hat_valid] = system(PSFs, RGB_batch_float_valid, phase_BN=False)
# cost function
with tf.name_scope("cost"):
RGB_GT_train = RGB_batch_float[:, int((N_B - 1) / 2):-int((N_B - 1) / 2),
int((N_B - 1) / 2):-int((N_B - 1) / 2), :] # crop the all-in-focus to be
RGB_GT_valid = RGB_batch_float_valid[:, int((N_B - 1) / 2):-int((N_B - 1) / 2),
int((N_B - 1) / 2):-int((N_B - 1) / 2), :]
cost_rms_train = cost_rms(RGB_GT_train, RGB_hat_train)
cost_rms_valid = cost_rms(RGB_GT_valid, RGB_hat_valid)
cost_train = cost_rms_train
cost_valid = cost_rms_valid
# train ditial and optical part saparetely
vars_optical = tf.trainable_variables("PSFs")
vars_digital = tf.trainable_variables("system")
opt_optical = tf.train.AdamOptimizer(lr_optical)
opt_digital = tf.train.AdamOptimizer(lr_digital)
global_step = tf.Variable(0, name='global_step', trainable=False) # initialize the stepsize
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # update the variables with gradient descent
with tf.control_dependencies(update_ops):
grads = tf.gradients(cost_train, vars_optical + vars_digital)
grads_optical = grads[:len(vars_optical)]
grads_digital = grads[len(vars_optical):]
train_op_optical = opt_optical.apply_gradients(zip(grads_optical, vars_optical))
train_op_digital = opt_digital.apply_gradients(zip(grads_digital, vars_digital))
train_op = tf.group(train_op_optical, train_op_digital)
# tensorboard
tf.summary.scalar('cost_train', cost_train)
tf.summary.scalar('cost_valid', cost_valid)
tf.summary.scalar('cost_rms_train', cost_rms_train)
tf.summary.scalar('cost_rms_valid', cost_rms_valid)
tf.summary.histogram('a_zernike', a_zernike)
tf.summary.histogram('a_zernike_learn', a_zernike_learn)
tf.summary.histogram('a_zernike_fix', a_zernike_fix)
tf.summary.image('Height', tf.expand_dims(tf.expand_dims(h, 0), -1))
tf.summary.image('sharp_valid', tf.image.convert_image_dtype(RGB_GT_valid[0:1, :, :, :], dtype = tf.uint8))
tf.summary.image('blur_valid', tf.image.convert_image_dtype(blur_valid[0:1, :, :, :], dtype = tf.uint8))
tf.summary.image('RGB_hat_valid', tf.image.convert_image_dtype(RGB_hat_valid[0:1, :, :, :], dtype = tf.uint8))
tf.summary.image('PSF_n100', PSFs[0:1,:,:])
tf.summary.image('PSF_p90', PSFs[19:20,:,:])
tf.summary.image('PSF_p100', PSFs[20:21,:,:])
merged = tf.summary.merge_all()
########################################## Train #############################################
# variables_to_restore = [v for v in tf.global_variables() if v.name.startswith('system')]
# saver = tf.train.Saver(variables_to_restore)
saver_all = tf.train.Saver(max_to_keep=1)
saver_best = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
if not os.path.exists(results_dir):
os.makedirs(results_dir)
best_dir = 'best_model/'
if not os.path.exists(results_dir + best_dir):
os.makedirs(results_dir + best_dir)
best_valid_loss = 100
else:
best_valid_loss = np.loadtxt(results_dir + 'best_valid_loss.txt')
print('Current best valid loss = ' + str(best_valid_loss))
if not tf.train.checkpoint_exists(results_dir + 'checkpoint'):
# option1: run a new one
out_all = np.empty((0, 2)) # for out_all 4D: [train_loss,valid_loss,train_acc,valid_acc]
print('Start to save at: ', results_dir)
else:
print(results_dir)
model_path = tf.train.latest_checkpoint(results_dir)
load_path = saver_all.restore(sess, model_path)
out_all = np.load(results_dir + 'out_all.npy')
print('Continue to save at: ', results_dir)
train_writer = tf.summary.FileWriter(results_dir + '/summary/', sess.graph)
# threading for parallel
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(100000):
## load the batch
train_op.run() # only train digital
if i != 0 and i % 10000 == 0:
lr_digital = lr_digital / 5 # reduce the learning rate every 10k
if i % 10 == 0:
[train_summary, loss_train, loss_valid, loss_rms_valid] = sess.run(
[merged, cost_train, cost_valid, cost_rms_valid])
train_writer.add_summary(train_summary, i)
print("Iter " + str(i) + ", Train Loss = " + \
"{:.6f}".format(loss_train) + ", Valid Loss = " + \
"{:.6f}".format(loss_valid))
# save them
out = np.array([[loss_train, loss_valid]])
out_all = np.vstack((out_all, out))
np.save(results_dir + 'out_all.npy', out_all)
saver_all.save(sess, results_dir + "model.ckpt", global_step=i)
[ht, at, PSFst] = sess.run([h, a_zernike, PSFs])
np.savetxt(results_dir + 'HeightMap.txt', ht)
np.savetxt(results_dir + 'a_zernike.txt', at)
np.save(results_dir + 'PSFs.npy', PSFst)
if (loss_rms_valid < best_valid_loss) and (i > 1):
best_valid_loss = loss_rms_valid
np.savetxt(results_dir + 'best_valid_loss.txt', [best_valid_loss])
saver_best.save(sess, results_dir + best_dir + "model.ckpt")
np.save(results_dir + best_dir + 'out_all.npy', out_all)
np.savetxt(results_dir + best_dir + 'HeightMap.txt', ht)
print('best at iter ' + str(i) + ' with loss = ' + str(best_valid_loss))
train_writer.close()
coord.request_stop()
coord.join(threads)