-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetric_calculator.py
126 lines (107 loc) · 3.94 KB
/
metric_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pandas as pd
from typing import *
from metrics.quality import FID, DENSITY, AOG
from metrics.diversity import APD, ACPD, COVERAGE, WPD, MMS
class METRIC_CALCULATOR:
def __init__(self, args: dict, output_dir: str = "./") -> None:
self.str_to_metric = {
"fid": FID,
"density": DENSITY,
"apd": APD,
"acpd": ACPD,
"coverage": COVERAGE,
"mms": MMS,
"aog": AOG,
"wpd": WPD,
}
self.metric_to_str = {
FID: "fid",
DENSITY: "density",
APD: "apd",
ACPD: "acpd",
COVERAGE: "coverage",
MMS: "mms",
AOG: "aog",
WPD: "wpd",
}
self.output_dir = output_dir
self.args = args
self.used_metrics_names = list(self.args.keys())
self.used_metrics = [
self.str_to_metric[metric_name] for metric_name in self.used_metrics_names
]
self.df_results = pd.DataFrame(columns=["On"] + self.used_metrics_names)
def get_metrics_csv(
self,
xgenerated=None,
ygenerated=None,
xreal=None,
yreal=None,
):
# on real samples
row_to_add = {"On": "real"}
for METRIC in self.used_metrics:
print(self.metric_to_str[METRIC])
if "metric_params" in self.args[self.metric_to_str[METRIC]].keys():
metric = METRIC(
classifier=self.args[self.metric_to_str[METRIC]].get(
"classifier", None
),
batch_size=self.args[self.metric_to_str[METRIC]].get(
"batch_size", None
),
**self.args[self.metric_to_str[METRIC]]["metric_params"]
)
else:
metric = METRIC(
classifier=self.args[self.metric_to_str[METRIC]].get(
"classifier", None
),
batch_size=self.args[self.metric_to_str[METRIC]].get(
"batch_size", None
),
)
# if (
# self.metric_to_str[METRIC] != "aog"
# ):
metric_value = metric.calculate(
xreal=xreal,
yreal=yreal,
)
# else:
# metric_value = "N/A"
row_to_add[self.metric_to_str[METRIC]] = metric_value
self.df_results.loc[len(self.df_results)] = row_to_add
# on generated samples
row_to_add = {"On": "generated"}
for METRIC in self.used_metrics:
print(self.metric_to_str[METRIC])
if "metric_params" in self.args[self.metric_to_str[METRIC]].keys():
metric = METRIC(
classifier=self.args[self.metric_to_str[METRIC]].get(
"classifier", None
),
batch_size=self.args[self.metric_to_str[METRIC]].get(
"batch_size", None
),
**self.args[self.metric_to_str[METRIC]]["metric_params"]
)
else:
metric = METRIC(
classifier=self.args[self.metric_to_str[METRIC]].get(
"classifier", None
),
batch_size=self.args[self.metric_to_str[METRIC]].get(
"batch_size", None
),
)
metric_value = metric.calculate(
xgenerated=xgenerated,
ygenerated=ygenerated,
xreal=xreal,
yreal=yreal,
)
row_to_add[self.metric_to_str[METRIC]] = metric_value
self.df_results.loc[len(self.df_results)] = row_to_add
self.df_results.to_csv(self.output_dir + "metrics.csv", index=False)
return self.df_results