-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathkeras_spell.py
585 lines (523 loc) · 24.3 KB
/
keras_spell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# encoding: utf-8
'''
Created on Nov 26, 2015
@author: tal
Based in part on:
Learn math - https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py
See https://medium.com/@majortal/deep-spelling-9ffef96a24f6#.2c9pu8nlm
'''
from __future__ import print_function, division, unicode_literals
import os
import errno
from collections import Counter
from hashlib import sha256
import re
import json
import itertools
import logging
import requests
import numpy as np
from numpy.random import choice as random_choice, randint as random_randint, shuffle as random_shuffle, seed as random_seed, rand
from numpy import zeros as np_zeros # pylint:disable=no-name-in-module
from keras.models import Sequential, load_model
from keras.layers import Activation, TimeDistributed, Dense, RepeatVector, Dropout, recurrent
from keras.callbacks import Callback
# Set a logger for the module
LOGGER = logging.getLogger(__name__) # Every log will use the module name
LOGGER.addHandler(logging.StreamHandler())
LOGGER.setLevel(logging.DEBUG)
random_seed(123) # Reproducibility
class Configuration(object):
"""Dump stuff here"""
CONFIG = Configuration()
#pylint:disable=attribute-defined-outside-init
# Parameters for the model:
CONFIG.input_layers = 2
CONFIG.output_layers = 2
CONFIG.amount_of_dropout = 0.2
CONFIG.hidden_size = 500
CONFIG.initialization = "he_normal" # : Gaussian initialization scaled by fan-in (He et al., 2014)
CONFIG.number_of_chars = 100
CONFIG.max_input_len = 60
CONFIG.inverted = True
# parameters for the training:
CONFIG.batch_size = 100 # As the model changes in size, play with the batch size to best fit the process in memory
CONFIG.epochs = 500 # due to mini-epochs.
CONFIG.steps_per_epoch = 1000 # This is a mini-epoch. Using News 2013 an epoch would need to be ~60K.
CONFIG.validation_steps = 10
CONFIG.number_of_iterations = 10
#pylint:enable=attribute-defined-outside-init
DIGEST = sha256(json.dumps(CONFIG.__dict__, sort_keys=True)).hexdigest()
# Parameters for the dataset
MIN_INPUT_LEN = 5
AMOUNT_OF_NOISE = 0.2 / CONFIG.max_input_len
CHARS = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .")
PADDING = "☕"
DATA_FILES_PATH = "~/Downloads/data"
DATA_FILES_FULL_PATH = os.path.expanduser(DATA_FILES_PATH)
DATA_FILES_URL = "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz"
NEWS_FILE_NAME_COMPRESSED = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.shuffled.gz") # 1.1 GB
NEWS_FILE_NAME_ENGLISH = "news.2013.en.shuffled"
NEWS_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, NEWS_FILE_NAME_ENGLISH)
NEWS_FILE_NAME_CLEAN = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.clean")
NEWS_FILE_NAME_FILTERED = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.filtered")
NEWS_FILE_NAME_SPLIT = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.split")
NEWS_FILE_NAME_TRAIN = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.train")
NEWS_FILE_NAME_VALIDATE = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.validate")
CHAR_FREQUENCY_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, "char_frequency.json")
SAVED_MODEL_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, "keras_spell_e{}.h5") # an HDF5 file
# Some cleanup:
NORMALIZE_WHITESPACE_REGEX = re.compile(r'[^\S\n]+', re.UNICODE) # match all whitespace except newlines
RE_DASH_FILTER = re.compile(r'[\-\˗\֊\‐\‑\‒\–\—\⁻\₋\−\﹣\-]', re.UNICODE)
RE_APOSTROPHE_FILTER = re.compile(r''|[ʼ՚'‘’‛❛❜ߴߵ`‵´ˊˋ{}{}{}{}{}{}{}{}{}]'.format(unichr(768), unichr(769), unichr(832),
unichr(833), unichr(2387), unichr(5151),
unichr(5152), unichr(65344), unichr(8242)),
re.UNICODE)
RE_LEFT_PARENTH_FILTER = re.compile(r'[\(\[\{\⁽\₍\❨\❪\﹙\(]', re.UNICODE)
RE_RIGHT_PARENTH_FILTER = re.compile(r'[\)\]\}\⁾\₎\❩\❫\﹚\)]', re.UNICODE)
ALLOWED_CURRENCIES = """¥£₪$€฿₨"""
ALLOWED_PUNCTUATION = """-!?/;"'%&<>.()[]{}@#:,|=*"""
RE_BASIC_CLEANER = re.compile(r'[^\w\s{}{}]'.format(re.escape(ALLOWED_CURRENCIES), re.escape(ALLOWED_PUNCTUATION)), re.UNICODE)
# pylint:disable=invalid-name
def download_the_news_data():
"""Download the news data"""
LOGGER.info("Downloading")
try:
os.makedirs(os.path.dirname(NEWS_FILE_NAME_COMPRESSED))
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
with open(NEWS_FILE_NAME_COMPRESSED, "wb") as output_file:
response = requests.get(DATA_FILES_URL, stream=True)
total_length = response.headers.get('content-length')
downloaded = percentage = 0
print("»"*100)
total_length = int(total_length)
for data in response.iter_content(chunk_size=4096):
downloaded += len(data)
output_file.write(data)
new_percentage = 100 * downloaded // total_length
if new_percentage > percentage:
print("☑", end="")
percentage = new_percentage
print()
def uncompress_data():
"""Uncompress the data files"""
import gzip
with gzip.open(NEWS_FILE_NAME_COMPRESSED, 'rb') as compressed_file:
with open(NEWS_FILE_NAME_COMPRESSED[:-3], 'wb') as outfile:
outfile.write(compressed_file.read())
def add_noise_to_string(a_string, amount_of_noise):
"""Add some artificial spelling mistakes to the string"""
if rand() < amount_of_noise * len(a_string):
# Replace a character with a random character
random_char_position = random_randint(len(a_string))
a_string = a_string[:random_char_position] + random_choice(CHARS[:-1]) + a_string[random_char_position + 1:]
if rand() < amount_of_noise * len(a_string):
# Delete a character
random_char_position = random_randint(len(a_string))
a_string = a_string[:random_char_position] + a_string[random_char_position + 1:]
if len(a_string) < CONFIG.max_input_len and rand() < amount_of_noise * len(a_string):
# Add a random character
random_char_position = random_randint(len(a_string))
a_string = a_string[:random_char_position] + random_choice(CHARS[:-1]) + a_string[random_char_position:]
if rand() < amount_of_noise * len(a_string):
# Transpose 2 characters
random_char_position = random_randint(len(a_string) - 1)
a_string = (a_string[:random_char_position] + a_string[random_char_position + 1] + a_string[random_char_position] +
a_string[random_char_position + 2:])
return a_string
def _vectorize(questions, answers, ctable):
"""Vectorize the data as numpy arrays"""
len_of_questions = len(questions)
X = np_zeros((len_of_questions, CONFIG.max_input_len, ctable.size), dtype=np.bool)
for i in xrange(len(questions)):
sentence = questions.pop()
for j, c in enumerate(sentence):
try:
X[i, j, ctable.char_indices[c]] = 1
except KeyError:
pass # Padding
y = np_zeros((len_of_questions, CONFIG.max_input_len, ctable.size), dtype=np.bool)
for i in xrange(len(answers)):
sentence = answers.pop()
for j, c in enumerate(sentence):
try:
y[i, j, ctable.char_indices[c]] = 1
except KeyError:
pass # Padding
return X, y
def slice_X(X, start=None, stop=None):
"""This takes an array-like, or a list of
array-likes, and outputs:
- X[start:stop] if X is an array-like
- [x[start:stop] for x in X] if X in a list
Can also work on list/array of indices: `slice_X(x, indices)`
# Arguments
start: can be an integer index (start index)
or a list/array of indices
stop: integer (stop index); should be None if
`start` was a list.
"""
if isinstance(X, list):
if hasattr(start, '__len__'):
# hdf5 datasets only support list objects as indices
if hasattr(start, 'shape'):
start = start.tolist()
return [x[start] for x in X]
else:
return [x[start:stop] for x in X]
else:
if hasattr(start, '__len__'):
if hasattr(start, 'shape'):
start = start.tolist()
return X[start]
else:
return X[start:stop]
def vectorize(questions, answers, chars=None):
"""Vectorize the questions and expected answers"""
print('Vectorization...')
chars = chars or CHARS
ctable = CharacterTable(chars)
X, y = _vectorize(questions, answers, ctable)
# Explicitly set apart 10% for validation data that we never train over
split_at = int(len(X) - len(X) / 10)
(X_train, X_val) = (slice_X(X, 0, split_at), slice_X(X, split_at))
(y_train, y_val) = (y[:split_at], y[split_at:])
print(X_train.shape)
print(y_train.shape)
return X_train, X_val, y_train, y_val, CONFIG.max_input_len, ctable
def generate_model(output_len, chars=None):
"""Generate the model"""
print('Build model...')
chars = chars or CHARS
model = Sequential()
# "Encode" the input sequence using an RNN, producing an output of hidden_size
# note: in a situation where your input sequences have a variable length,
# use input_shape=(None, nb_feature).
for layer_number in range(CONFIG.input_layers):
model.add(recurrent.LSTM(CONFIG.hidden_size, input_shape=(None, len(chars)), kernel_initializer=CONFIG.initialization,
return_sequences=layer_number + 1 < CONFIG.input_layers))
model.add(Dropout(CONFIG.amount_of_dropout))
# For the decoder's input, we repeat the encoded input for each time step
model.add(RepeatVector(output_len))
# The decoder RNN could be multiple layers stacked or a single layer
for _ in range(CONFIG.output_layers):
model.add(recurrent.LSTM(CONFIG.hidden_size, return_sequences=True, kernel_initializer=CONFIG.initialization))
model.add(Dropout(CONFIG.amount_of_dropout))
# For each of step of the output sequence, decide which character should be chosen
model.add(TimeDistributed(Dense(len(chars), kernel_initializer=CONFIG.initialization)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
class Colors(object):
"""For nicer printouts"""
green = '\033[92m'
red = '\033[91m'
close = '\033[0m'
class CharacterTable(object):
"""
Given a set of characters:
+ Encode them to a one hot integer representation
+ Decode the one hot integer representation to their character output
+ Decode a vector of probabilities to their character output
"""
def __init__(self, chars):
self.chars = sorted(set(chars))
self.char_indices = dict((c, i) for i, c in enumerate(self.chars))
self.indices_char = dict((i, c) for i, c in enumerate(self.chars))
@property
def size(self):
"""The number of chars"""
return len(self.chars)
def encode(self, C, maxlen):
"""Encode as one-hot"""
X = np_zeros((maxlen, len(self.chars)), dtype=np.bool) # pylint:disable=no-member
for i, c in enumerate(C):
X[i, self.char_indices[c]] = 1
return X
def decode(self, X, calc_argmax=True):
"""Decode from one-hot"""
if calc_argmax:
X = X.argmax(axis=-1)
return ''.join(self.indices_char[x] for x in X if x)
def generator(file_name):
"""Returns a tuple (inputs, targets)
All arrays should contain the same number of samples.
The generator is expected to loop over its data indefinitely.
An epoch finishes when samples_per_epoch samples have been seen by the model.
"""
ctable = CharacterTable(read_top_chars())
batch_of_answers = []
while True:
with open(file_name) as answers:
for answer in answers:
batch_of_answers.append(answer.strip().decode('utf-8'))
if len(batch_of_answers) == CONFIG.batch_size:
random_shuffle(batch_of_answers)
batch_of_questions = []
for answer_index, answer in enumerate(batch_of_answers):
question, answer = generate_question(answer)
batch_of_answers[answer_index] = answer
assert len(answer) == CONFIG.max_input_len
question = question[::-1] if CONFIG.inverted else question
batch_of_questions.append(question)
X, y = _vectorize(batch_of_questions, batch_of_answers, ctable)
yield X, y
batch_of_answers = []
def print_random_predictions(model, ctable, X_val, y_val):
"""Select 10 samples from the validation set at random so we can visualize errors"""
print()
for _ in range(10):
ind = random_randint(0, len(X_val))
rowX, rowy = X_val[np.array([ind])], y_val[np.array([ind])] # pylint:disable=no-member
preds = model.predict_classes(rowX, verbose=0)
q = ctable.decode(rowX[0])
correct = ctable.decode(rowy[0])
guess = ctable.decode(preds[0], calc_argmax=False)
if CONFIG.inverted:
print('Q', q[::-1]) # inverted back!
else:
print('Q', q)
print('A', correct)
print(Colors.green + '☑' + Colors.close if correct == guess else Colors.red + '☒' + Colors.close, guess)
print('---')
print()
class OnEpochEndCallback(Callback):
"""Execute this every end of epoch"""
def on_epoch_end(self, epoch, logs=None):
"""On Epoch end - do some stats"""
ctable = CharacterTable(read_top_chars())
X_val, y_val = next(generator(NEWS_FILE_NAME_VALIDATE))
print_random_predictions(self.model, ctable, X_val, y_val)
self.model.save(SAVED_MODEL_FILE_NAME.format(epoch))
ON_EPOCH_END_CALLBACK = OnEpochEndCallback()
def itarative_train(model):
"""
Iterative training of the model
- To allow for finite RAM...
- To allow infinite training data as the training noise is injected in runtime
"""
model.fit_generator(generator(NEWS_FILE_NAME_TRAIN), steps_per_epoch=CONFIG.steps_per_epoch,
epochs=CONFIG.epochs,
verbose=1, callbacks=[ON_EPOCH_END_CALLBACK, ], validation_data=generator(NEWS_FILE_NAME_VALIDATE),
validation_steps=CONFIG.validation_steps,
class_weight=None, max_q_size=10, workers=1,
pickle_safe=False, initial_epoch=0)
def iterate_training(model, X_train, y_train, X_val, y_val, ctable):
"""Iterative Training"""
# Train the model each generation and show predictions against the validation dataset
for iteration in range(1, CONFIG.number_of_iterations):
print()
print('-' * 50)
print('Iteration', iteration)
model.fit(X_train, y_train, batch_size=CONFIG.batch_size, epochs=CONFIG.epochs,
validation_data=(X_val, y_val))
print_random_predictions(model, ctable, X_val, y_val)
def clean_text(text):
"""Clean the text - remove unwanted chars, fold punctuation etc."""
result = NORMALIZE_WHITESPACE_REGEX.sub(' ', text.strip())
result = RE_DASH_FILTER.sub('-', result)
result = RE_APOSTROPHE_FILTER.sub("'", result)
result = RE_LEFT_PARENTH_FILTER.sub("(", result)
result = RE_RIGHT_PARENTH_FILTER.sub(")", result)
result = RE_BASIC_CLEANER.sub('', result)
return result
def preprocesses_data_clean():
"""Pre-process the data - step 1 - cleanup"""
with open(NEWS_FILE_NAME_CLEAN, "wb") as clean_data:
for line in open(NEWS_FILE_NAME):
decoded_line = line.decode('utf-8')
cleaned_line = clean_text(decoded_line)
encoded_line = cleaned_line.encode("utf-8")
clean_data.write(encoded_line + b"\n")
def preprocesses_data_analyze_chars():
"""Pre-process the data - step 2 - analyze the characters"""
counter = Counter()
LOGGER.info("Reading data:")
for line in open(NEWS_FILE_NAME_CLEAN):
decoded_line = line.decode('utf-8')
counter.update(decoded_line)
# data = open(NEWS_FILE_NAME_CLEAN).read().decode('utf-8')
# LOGGER.info("Read.\nCounting characters:")
# counter = Counter(data.replace("\n", ""))
LOGGER.info("Done.\nWriting to file:")
with open(CHAR_FREQUENCY_FILE_NAME, 'wb') as output_file:
output_file.write(json.dumps(counter))
most_popular_chars = {key for key, _value in counter.most_common(CONFIG.number_of_chars)}
LOGGER.info("The top %s chars are:", CONFIG.number_of_chars)
LOGGER.info("".join(sorted(most_popular_chars)))
def read_top_chars():
"""Read the top chars we saved to file"""
chars = json.loads(open(CHAR_FREQUENCY_FILE_NAME).read())
counter = Counter(chars)
most_popular_chars = {key for key, _value in counter.most_common(CONFIG.number_of_chars)}
return most_popular_chars
def preprocesses_data_filter():
"""Pre-process the data - step 3 - filter only sentences with the right chars"""
most_popular_chars = read_top_chars()
LOGGER.info("Reading and filtering data:")
with open(NEWS_FILE_NAME_FILTERED, "wb") as output_file:
for line in open(NEWS_FILE_NAME_CLEAN):
decoded_line = line.decode('utf-8')
if decoded_line and not bool(set(decoded_line) - most_popular_chars):
output_file.write(line)
LOGGER.info("Done.")
def read_filtered_data():
"""Read the filtered data corpus"""
LOGGER.info("Reading filtered data:")
lines = open(NEWS_FILE_NAME_FILTERED).read().decode('utf-8').split("\n")
LOGGER.info("Read filtered data - %s lines", len(lines))
return lines
def preprocesses_split_lines():
"""Preprocess the text by splitting the lines between min-length and max_length
I don't like this step:
I think the start-of-sentence is important.
I think the end-of-sentence is important.
Sometimes the stripped down sub-sentence is missing crucial context.
Important NGRAMs are cut (though given enough data, that might be moot).
I do this to enable batch-learning by padding to a fixed length.
"""
LOGGER.info("Reading filtered data:")
answers = set()
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file:
for _line in open(NEWS_FILE_NAME_FILTERED):
line = _line.decode('utf-8')
while len(line) > MIN_INPUT_LEN:
if len(line) <= CONFIG.max_input_len:
answer = line
line = ""
else:
space_location = line.rfind(" ", MIN_INPUT_LEN, CONFIG.max_input_len - 1)
if space_location > -1:
answer = line[:space_location]
line = line[len(answer) + 1:]
else:
space_location = line.rfind(" ") # no limits this time
if space_location == -1:
break # we are done with this line
else:
line = line[space_location + 1:]
continue
answers.add(answer)
output_file.write(answer.encode('utf-8') + b"\n")
def preprocesses_split_lines2():
"""Preprocess the text by splitting the lines between min-length and max_length
Alternative split.
"""
LOGGER.info("Reading filtered data:")
answers = set()
for encoded_line in open(NEWS_FILE_NAME_FILTERED):
line = encoded_line.decode('utf-8')
if CONFIG.max_input_len >= len(line) > MIN_INPUT_LEN:
answers.add(line)
LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers))
LOGGER.info("Here are some examples:")
for answer in itertools.islice(answers, 10):
LOGGER.info(answer)
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file:
output_file.write("".join(answers).encode('utf-8'))
def preprocesses_split_lines3():
"""Preprocess the text by selecting only max n-grams
Alternative split.
"""
LOGGER.info("Reading filtered data:")
answers = set()
for encoded_line in open(NEWS_FILE_NAME_FILTERED):
line = encoded_line.decode('utf-8')
if line.count(" ") < 5:
answers.add(line)
LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers))
LOGGER.info("Here are some examples:")
for answer in itertools.islice(answers, 10):
LOGGER.info(answer)
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file:
output_file.write("".join(answers).encode('utf-8'))
def preprocesses_split_lines4():
"""Preprocess the text by selecting only sentences with most-common words AND not too long
Alternative split.
"""
LOGGER.info("Reading filtered data:")
from gensim.models.word2vec import Word2Vec
FILTERED_W2V = "fw2v.bin"
model = Word2Vec.load_word2vec_format(FILTERED_W2V, binary=True) # C text format
print(len(model.wv.index2word))
# answers = set()
# for encoded_line in open(NEWS_FILE_NAME_FILTERED):
# line = encoded_line.decode('utf-8')
# if line.count(" ") < 5:
# answers.add(line)
# LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers))
# LOGGER.info("Here are some examples:")
# for answer in itertools.islice(answers, 10):
# LOGGER.info(answer)
# with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file:
# output_file.write("".join(answers).encode('utf-8'))
def preprocess_partition_data():
"""Set asside data for validation"""
answers = open(NEWS_FILE_NAME_SPLIT).read().decode('utf-8').split("\n")
print('shuffle', end=" ")
random_shuffle(answers)
print("Done")
# Explicitly set apart 10% for validation data that we never train over
split_at = len(answers) - len(answers) // 10
with open(NEWS_FILE_NAME_TRAIN, "wb") as output_file:
output_file.write("\n".join(answers[:split_at]).encode('utf-8'))
with open(NEWS_FILE_NAME_VALIDATE, "wb") as output_file:
output_file.write("\n".join(answers[split_at:]).encode('utf-8'))
def generate_question(answer):
"""Generate a question by adding noise"""
question = add_noise_to_string(answer, AMOUNT_OF_NOISE)
# Add padding:
question += PADDING * (CONFIG.max_input_len - len(question))
answer += PADDING * (CONFIG.max_input_len - len(answer))
return question, answer
def generate_news_data():
"""Generate some news data"""
print ("Generating Data")
answers = open(NEWS_FILE_NAME_SPLIT).read().decode('utf-8').split("\n")
questions = []
print('shuffle', end=" ")
random_shuffle(answers)
print("Done")
for answer_index, answer in enumerate(answers):
question, answer = generate_question(answer)
answers[answer_index] = answer
assert len(answer) == CONFIG.max_input_len
if random_randint(100000) == 8: # Show some progress
print (len(answers))
print ("answer: '{}'".format(answer))
print ("question: '{}'".format(question))
print ()
question = question[::-1] if CONFIG.inverted else question
questions.append(question)
return questions, answers
def train_speller_w_all_data():
"""Train the speller if all data fits into RAM"""
questions, answers = generate_news_data()
chars_answer = set.union(*(set(answer) for answer in answers))
chars_question = set.union(*(set(question) for question in questions))
chars = list(set.union(chars_answer, chars_question))
X_train, X_val, y_train, y_val, y_maxlen, ctable = vectorize(questions, answers, chars)
print ("y_maxlen, chars", y_maxlen, "".join(chars))
model = generate_model(y_maxlen, chars)
iterate_training(model, X_train, y_train, X_val, y_val, ctable)
def train_speller(from_file=None):
"""Train the speller"""
if from_file:
model = load_model(from_file)
else:
model = generate_model(CONFIG.max_input_len, chars=read_top_chars())
itarative_train(model)
if __name__ == '__main__':
# download_the_news_data()
# uncompress_data()
# preprocesses_data_clean()
# preprocesses_data_analyze_chars()
# preprocesses_data_filter()
# preprocesses_split_lines() --- Choose this step or:
# preprocesses_split_lines2()
# preprocesses_split_lines4()
# preprocess_partition_data()
# train_speller(os.path.join(DATA_FILES_FULL_PATH, "keras_spell_e15.h5"))
train_speller()