forked from naa/young-diagrams
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbn-young-diagrams.nb
2279 lines (2244 loc) · 105 KB
/
bn-young-diagrams.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 107488, 2271]
NotebookOptionsPosition[ 105182, 2227]
NotebookOutlinePosition[ 105583, 2243]
CellTagsIndexPosition[ 105540, 2240]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"myFactorial", "[", "n_Integer", "]"}], ":=",
RowBox[{"n", "!"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"myFactorial", "[", "n_", "]"}], ":=", "Infinity"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"mnlfac", "[",
RowBox[{"nn_", ",", "n_", ",", "a_List"}], "]"}], ":=",
RowBox[{
RowBox[{"Product", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"nn", "+",
RowBox[{"2", "*", "k"}]}], ")"}], "!"}], ")"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{"2", "*", "k"}], ")"}]}], "*",
RowBox[{"myFactorial", "[",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"nn", "+",
RowBox[{"a", "[",
RowBox[{"[",
RowBox[{"k", "+", "1"}], "]"}], "]"}], "+",
RowBox[{"2", "*", "n"}], "-", "1"}], ")"}], "/", "2"}], ")"}],
"]"}], "*",
RowBox[{"myFactorial", "[",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"nn", "-",
RowBox[{"a", "[",
RowBox[{"[",
RowBox[{"k", "+", "1"}], "]"}], "]"}], "+",
RowBox[{"2", "*", "n"}], "-", "1"}], ")"}], "/", "2"}], ")"}],
"]"}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",",
RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}], "*",
RowBox[{"Product", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"a", "[",
RowBox[{"[", "i", "]"}], "]"}], ")"}], "^", "2"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}], "*",
RowBox[{"Product", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"a", "[",
RowBox[{"[", "i", "]"}], "]"}], ")"}], "^", "2"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"a", "[",
RowBox[{"[", "j", "]"}], "]"}], ")"}], "^", "2"}]}], ")"}], "^",
"2"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",",
RowBox[{"i", "+", "1"}], ",", "n"}], "}"}]}], "]"}], "*",
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"n", "^", "2"}]}], "+",
RowBox[{"2", "*", "n"}], "-",
RowBox[{"n", "*", "nn"}]}], ")"}]}], "*",
RowBox[{
RowBox[{"n", "!"}], "/",
RowBox[{"(",
RowBox[{"Product", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"2", "*", "i"}], ")"}], "!"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}], ")"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"findmax", "[",
RowBox[{"n_", ",", "nn_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"a", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"2", "*",
RowBox[{"(",
RowBox[{"n", "-", "i"}], ")"}]}], "+", "1", "+",
RowBox[{"Mod", "[",
RowBox[{"nn", ",", "2"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "n"}], "}"}]}], "]"}]}], ",", "i", ",", "oldval",
",", "newval", ",",
RowBox[{"cont", "=", "True"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"While", "[",
RowBox[{"cont", ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"cont", "=", "False"}], ";", "\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "n"}], ",",
RowBox[{"i", "\[GreaterEqual]", "1"}], ",",
RowBox[{"i", "--"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"oldval", "=",
RowBox[{"mnlfac", "[",
RowBox[{"nn", ",", "n", ",", "a"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"a", "[",
RowBox[{"[", "i", "]"}], "]"}], "+=", "2"}], ";",
"\[IndentingNewLine]",
RowBox[{"newval", "=",
RowBox[{"mnlfac", "[",
RowBox[{"nn", ",", "n", ",", "a"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"While", "[",
RowBox[{
RowBox[{"newval", ">", "oldval"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"cont", "=", "True"}], ";", "\[IndentingNewLine]",
RowBox[{"oldval", "=", "newval"}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", "[",
RowBox[{"[", "i", "]"}], "]"}], "+=", "2"}], ";",
"\[IndentingNewLine]",
RowBox[{"newval", "=",
RowBox[{"mnlfac", "[",
RowBox[{"nn", ",", "n", ",", "a"}], "]"}]}]}]}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"a", "[",
RowBox[{"[", "i", "]"}], "]"}], "-=", "2"}], ";"}]}],
"\[IndentingNewLine]", "]"}]}]}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]", "a"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rhotheor", "[",
RowBox[{"x_", ",", "c_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Sign", "[",
RowBox[{
RowBox[{"Abs", "[", "x", "]"}], "-",
RowBox[{"c", "/", "2"}]}], "]"}]}], ")"}], "/", "2"}], "*",
RowBox[{"Re", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Sign", "[",
RowBox[{"c", "-", "4"}], "]"}]}], ")"}], "/", "4"}], "+",
RowBox[{
RowBox[{"Sign", "[",
RowBox[{"c", "-", "4"}], "]"}], "*",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"4", "*", "Pi"}], ")"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"ArcTan", "[",
FractionBox[
RowBox[{
RowBox[{"-", "8"}], "-",
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], "+", "x"}], ")"}]}]}],
RowBox[{
SqrtBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], "+", "c"}], ")"}], "2"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "4"}], "+",
RowBox[{"2", " ", "c"}], "-",
SuperscriptBox["x", "2"]}]]}]], "]"}], "+",
RowBox[{"ArcTan", "[",
FractionBox[
RowBox[{
RowBox[{"-", "8"}], "+",
RowBox[{"c", " ",
RowBox[{"(",
RowBox[{"4", "+", "x"}], ")"}]}]}],
RowBox[{
SqrtBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], "+", "c"}], ")"}], "2"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "4"}], "+",
RowBox[{"2", " ", "c"}], "-",
SuperscriptBox["x", "2"]}]]}]], "]"}]}], ")"}]}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rhotheor2", "[",
RowBox[{"x_", ",", "c_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Sign", "[",
RowBox[{
RowBox[{"Abs", "[", "x", "]"}], "-",
RowBox[{"c", "/", "2"}]}], "]"}]}], ")"}], "/", "2"}], "*",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Sign", "[",
RowBox[{"c", "-", "4"}], "]"}]}], ")"}], "/", "4"}], "+",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sign", "[",
RowBox[{"c", "-", "4"}], "]"}]}], "/",
RowBox[{"(",
RowBox[{"4", "*", "Pi"}], ")"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"Im", "[",
RowBox[{
RowBox[{"Log", "[",
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"(",
RowBox[{"c", "-", "4"}], ")"}], "^", "2"}], "]"}], "*",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"x", "^", "2"}], "-",
RowBox[{"2", "*", "c"}], "+", "4"}], "]"}]}], "-",
RowBox[{"c", "*",
RowBox[{"(",
RowBox[{"x", "-", "4"}], ")"}]}], "-", "8"}], "]"}], "+",
RowBox[{"Log", "[",
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"(",
RowBox[{"c", "-", "4"}], ")"}], "^", "2"}], "]"}], "*",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"x", "^", "2"}], "-",
RowBox[{"2", "*", "c"}], "+", "4"}], "]"}]}], "+",
RowBox[{"c", "*",
RowBox[{"(",
RowBox[{"x", "+", "4"}], ")"}]}], "-", "8"}], "]"}]}], "]"}],
"-", "Pi"}], ")"}]}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ft", "[",
RowBox[{"y_", ",", "c_"}], "]"}], ":=",
RowBox[{"1", "+",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"1", "-",
RowBox[{"4", "*",
RowBox[{"rhotheor", "[",
RowBox[{"x", ",", "c"}], "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "y"}], "}"}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"prepdata", "[", "bntab_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "n", "}"}], ",",
RowBox[{
RowBox[{"n", "=",
RowBox[{"Length", "[", "bntab", "]"}]}], ";",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"bntab", "[",
RowBox[{"[", "i", "]"}], "]"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{"2", "*",
RowBox[{"(",
RowBox[{"n", "-", "i"}], ")"}]}], "+", "1"}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "n"}], "}"}]}], "]"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"trtab", "[", "tab_", "]"}], ":=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Length", "[",
RowBox[{"Select", "[",
RowBox[{"tab", ",",
RowBox[{
RowBox[{"#", "\[GreaterEqual]", "i"}], "&"}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"tab", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"reccolumn", "[",
RowBox[{"colnum_", ",", "n_", ",", "wd_", ",",
RowBox[{"sc_", ":", "1"}]}], "]"}], ":=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Rectangle", "[",
RowBox[{
RowBox[{"sc", "*",
RowBox[{"{",
RowBox[{"colnum", ",",
RowBox[{"i", "-", "1"}]}], "}"}]}], ",",
RowBox[{"sc", "*",
RowBox[{"{",
RowBox[{
RowBox[{"colnum", "+", "wd"}], ",", "i"}], "}"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "n"}], "}"}]}], "]"}]}], ";",
RowBox[{
RowBox[{"showbntableau", "[",
RowBox[{"tab_", ",",
RowBox[{"sc_", ":", "1"}], ",",
RowBox[{"rot_", ":", "False"}], ",",
RowBox[{"tran_", ":",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], ":=",
RowBox[{"If", "[",
RowBox[{
RowBox[{"tab", "\[Equal]",
RowBox[{"{", "0", "}"}]}], ",",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"Text", "[",
RowBox[{"Style", "[",
RowBox[{"\"\<\[EmptySet]\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "16"}]}], "]"}], "]"}], ",",
RowBox[{"ImageSize", "\[Rule]", "16"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "tab1", "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"tab1", "=",
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"tab", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"tab", "[",
RowBox[{"[", "i", "]"}], "]"}], "-",
RowBox[{"tab", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}], "/", "2"}]}],
",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{
RowBox[{"Length", "[", "tab", "]"}], "-", "1"}]}], "}"}]}],
"]"}], ",",
RowBox[{"tab", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], "]"}]}], ";",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"White", ",",
RowBox[{"EdgeForm", "[", "Thin", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Translate", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{"rot", ",",
RowBox[{"Rotate", "[",
RowBox[{"#", ",",
RowBox[{"Pi", "/", "4"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], "]"}], ",", "#"}],
"]"}], "&"}], "/@", "\[IndentingNewLine]",
RowBox[{"Flatten", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"reccolumn", "[",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"i", "\[LessEqual]",
RowBox[{"tab1", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ",",
RowBox[{
RowBox[{"i", "/", "2"}], "-",
RowBox[{"1", "/", "2"}]}], ",",
RowBox[{"i", "-",
RowBox[{
RowBox[{"tab1", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}], "/", "2"}], "-",
"1"}]}], "]"}], ",",
RowBox[{
RowBox[{"trtab", "[", "tab1", "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"If", "[",
RowBox[{
RowBox[{"i", "\[LessEqual]",
RowBox[{"tab1", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ",", " ",
RowBox[{"1", "/", "2"}], ",", "1"}], "]"}], ",", "sc"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Length", "[",
RowBox[{"trtab", "[", "tab1", "]"}], "]"}]}], "}"}]}],
"]"}], ",", "3"}], "]"}]}], ",", "\[IndentingNewLine]",
"tran"}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}]}]}],
"]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"showDiagramAndLimitShape", "[",
RowBox[{"n_", ",", "nn_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"data", ",", "cc"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"cc", "=",
RowBox[{
RowBox[{"(",
RowBox[{"nn", "+",
RowBox[{"2", "*", "n"}], "-", "1"}], ")"}], "/", "n"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"data", "=",
RowBox[{"findmax", "[",
RowBox[{"n", ",", "nn"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"showbntableau", "[",
RowBox[{
RowBox[{"prepdata", "[", "data", "]"}], ",",
RowBox[{
RowBox[{"Sqrt", "[", "2", "]"}], "/", "n"}], ",", "True", ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"ft", "[",
RowBox[{"x", ",", "cc"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{
RowBox[{"cc", "/", "2"}], "+",
RowBox[{"1", "/", "2"}]}]}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"-", "x"}], "+", "1"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Gray"}]}], "]"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"x", "-", "1"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",",
RowBox[{"cc", "/", "2"}]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Gray"}]}], "]"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"cc", "/", "2"}], "+",
RowBox[{"1", "/", "2"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"cc", "/", "2"}], "+",
RowBox[{"1", "/", "2"}]}]}], "}"}]}], "}"}]}], ",",
RowBox[{"Axes", "\[Rule]", "True"}]}], "]"}]}]}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.814191896947855*^9, 3.81419194195258*^9}},
CellLabel->"In[23]:=",ExpressionUUID->"6568ceed-b892-4c17-adc4-78bedbd32c8d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"ft", "[",
RowBox[{"x", ",", "2.0001"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8276003755816603`*^9, 3.8276003820919437`*^9}, {
3.827600466979718*^9, 3.827600490657786*^9}, {3.827600565235189*^9,
3.827600566187134*^9}, {3.827600656143154*^9, 3.827600656299156*^9}},
CellLabel->"In[40]:=",ExpressionUUID->"4b4b5f19-ac1b-4759-9d80-1a71db95a1fe"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwdlGs01AkYxoe0WcolWTtaBkuWtNlYhXiUOSmXCrWyua2lpC2UUFvLaEZR
yalJkktFtUXuVChyrVlFyKimMY0xBjPzV+sSNrP/3Q/vec/v/N734/MYh0b5
hCtTKBQvcv7b7uGSl40jO52tQ0wnFQoCKq760QNUW4xYxKUnfyZgk5+VU0ml
ozZS13zhHAGP59yKXOoOiKqjfdWmCPiFTT+6QA2D5Ro+c5mUwLvVp1zPUWMR
YWB/27yfwDXdbSlpVCZo2qMfNpYRYKhWmqdS2agVb01YGEJgl//10vEPhTBi
pp2qLJdDXcEIcDMsBS2t3VWmIYeZt1zSfKYKie1b6f5RMsS/sEfWxEN0HFCq
cG6SQq9Km6+k1ACRPRFfbiRFjdC1o3N9E5LbWjm5MWNoisxd7i9twdxpS7/6
1lFMrnDSvHegHUZPzMP2mI1CeaZIa7kZB3m9N4fT4kdgpwip8S3pQLZh6uD6
VxJ0MG1ftFl24r5NJJdmJwEtY2zmjrwLfTYrvE6kDmNseoD/yrobqobZJyMk
YhSO1nE00ntwN9MxnmMvhobBbUIk6kXRO2F0cPoQzu6r3nPNtA+z7N+pyXIR
plyKRBGJXNjlRenQNogQu6al6qvmfgQqgq025Q9ioKTlzEvjN2jbpjkmIYSY
i+y9anHsLTTULuo9cRVi5YZF83vqeGAMWXw0KHgPtxvGe8v1+HAxN1k8MyFA
vEGwyfuAAUSZiumhPgJYSXeqc70EyLE+vnYqfAA6muOqLbMC8Ngq2fqL+VBp
uFr6bc57PL1C9wx6xsN+27rXX3oIYZdidSJj/1sUbQm99nhKCObqQ5wflr3B
5Ji+ljhzEPpGAlNuTz+qfd0WsOkiTBx7vPh4AheJm1n5VWIR+lrzdR1s+2D8
zr2/gDWEiolPvoFTvXBYy2RT14jhXHVxX0JuDwIMO2eUesSQN627f313NyY5
54TRjGF8Cntj2TzfhSyVoFgfUwkKHfs152M6ocOvvqHcIkHET4K3G//uwMIT
jB32MSOI8Gb5hTtzQLkTVCpcOorxGs99zffbcSi79NzSplFYD4jZ/8y24NHK
06raB8dQHNXPU/Jogrb7IatkDSn6zYq7mBcawFvV1XO0XgrrIA+LBpNalOXB
VBQkQ7Sm088lmtUILLXTNpiX4QH3M52jW4Yk1nUG764c29MTDh8Ivol7EoOr
Gp5kDr6ea0zIysTpXFYIfyuBpBJ6QKJzJsJ8ZGYl3iTXaY2zRJfwTX19mZcf
gcb8ScUF60tIO7+77WwogZDqoZripxcRYXflg9pR0j9kaPE/ZcCEuWzzolvk
/xF/8dmKFMyvO76E+yfpL7tk58yz8Fo22H2riPSFeR7F7ixk+FUGbionQFEu
vvWX8CQUlj6HWfWkj/nDSU2HAd7L83kLekg/xOheMhyHBynTv/a8Iv1tG5FV
4hGwHYMtCshcJ22gjXvoxcLj5vdVG/nkfejBqVS3GNQmPH/GGCHZoj1Offte
ZK768bw32QuU5lqHLUlhiBHm7DAmSJY5fEwp+wXfef420DhBsqghTsVkF1SU
egszpkluY15JTPaBoNoxMmSW5N5y+mTrFtRHFqy2JnuJ8qDPtW+JEy7T1P/v
LUqShfcX0Me/elJv3Q==
"]]},
Annotation[#, "Charting`Private`Tag$163409#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 1}, {0., 0.9999999797755716}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.827600561797037*^9, 3.8276005673233356`*^9},
3.827600657597937*^9},
CellLabel->"Out[40]=",ExpressionUUID->"d9c661fd-6866-4752-9a44-0702846c20ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"rhotheor", "[",
RowBox[{
RowBox[{"y", "-", "1"}], ",", "2.001"}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.827600611887578*^9, 3.8276006509045677`*^9}, {
3.827600755935598*^9, 3.827600765538563*^9}},
CellLabel->"In[41]:=",ExpressionUUID->"07db18de-75b2-4776-a6bd-b2446ddc252e"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGCQBWIQ7ZX64uKBl6l2DGDwwH6BqH9bl+QUexi/kWOzeqfk
Ejg/InLh+g8ft8D53P8bY9zl9sP5qoHvXhzuPgLnl5+ztJ/x5SScL75F8B4j
43k4f9sj5zPnbS7B+Yey5kpHvrkC539Vs+Vfm3sdzmf6uVpAWvUWnG/2P2Fb
8Lo7cP6ZFpNzx7Tuw/nyE17/XPnuAZz/+vv9e1cNHsH5S17tPsXX9xjO55Nd
/v7Jkydwfk/m1rQFKs/g/G8Oq59k1D+H80uMjmwRO/wCzr+/7kj3RcVXcP7v
rCuzNatew/najuz/0na/gfPdFymmbxR/B+evDeyMC3dA8IUZP4b+zUDwj91Y
EhhQi+A3i594m9WD4AMASlub8A==
"]], LineBox[CompressedData["
1:eJwV0n1M1HUcB3CEIX9oKRDhE7JIza6Tp2hION43yXZAIVpR55QnxSTrNOKh
OUy45CFAIDzoFCHkIKRL73i0uAJmxzmZRO40vSV8fDhOYPL7LGaSkNq3Pz57
77W9/3rv80Lage3pri4uLmHi/k9348qx0VoJPUu9vZLuE1DtX3q7UUKLqsnc
OUaQlyyOedgiwTCeYjbaCcu/eOSxyCChSFMZsO0aYWGW0+pvkqApnovPuEKY
ybAVhnVL0Hc+zLk5TKDkgTdieiXoHOc/1Q0RLr931i2pX4Ld/Yau6iLhx7iT
FzItEuJ2ThrNFkJ1eJbi1G8SdijOba7qJxzZkPrUZJMQbVr+d9AvhI9fjO8b
vCHBWKCKkXoJW5as38R3JGgLXNrMPYRQd595twnhxP2h1i7C6vkFvcumJeyz
H5Y7Owj/OP8M3zwr4bPiyKIUI8HQV/lqzSKGr8/7xtVtBF1X3kzbUoai69p0
Ryvh6PcZ7X0+jL413h+9+x0hqTY6aMKfEevdb/lZT4grD5b+XcNw3oo9oWki
bNT4nfWUif42vfad0wRP9awsMoyxsTAqxedbwpPdjsmtEYwP8zXZ7g2EKdWV
M3uiGFbTrYinpwiWLYZ1FUrGaKNr87N1hFy/5IDbOxmt1k33a74hpCUEJ95M
ZXgduuT3ey0h/ssFpdf3MpaUlNs8hddN6v8aPsiYvT4iN2gJXquy117KZtji
wotdhR/Hv6myHGJUPFDaUo4TrnZNDPQeZRiUZdaQasLAvZ8edH/FCLpc91rz
12KfFWXr2ysYzffsa/2ENfkbqlp1jEe5u+QBVQR155Nfm+oZoco233OVBJVz
ZLa+ifFy1sJAhXDwW5nJ2h8YB0fntDkVhFVHoo9XtjPOzLw0uELYo+O5i6U9
jOllOWQ5Jv7HMT5XaGbU7Cr6I0t4zPd8YMEA45VUjwaZ8FBsSVreIIPUBpmz
nNB9WFWbO8RwlPpntgo3mmRDmSMMyz63/Wrh8rvzjz+5ykiLuLM4Uvjz54dD
MuyMxGh5wjPCu2Ma0veMMdIjQwLHy8SeeQdOJN9lqBNWnr4g/LpRMbxjghHl
mNK3CCuL67fvnWK8Tfkf1An/BzrDvWA=
"]], LineBox[CompressedData["
1:eJwVj3lQDGAYh7cokbW1jiZy7NIIDYkhJv2GQjomsq1cKUea1CYZJEIl7WLZ
Skptba6kTEqDEtYRZuykyzE5PnJMSvVqKYbK549vvnn++b3PI9kY5b/FVCAQ
OPP3/w9xLX1hGELwZQcDs48yFHfmDkgTEXY8s45s4CxVHtFaiQkxkW2GX5wz
pdvnqkcQlNGJDyceYxhWFVhnaUN4fX3sGhnnpICF25S2hF19Tekqzr87ppgN
siNkud7Z94izIkWclzSO4JJfNtriOMMnyR8XUwlh/ebUPX6ca2WGiF57giFb
ruvkvKSj3DzOgeCp/ZjgqWaoOqLV/ZpKSO7Syws4F1QqGo0zuI9AL9p9gsFO
tkoR7UyYqDg8qoVzajssOmcT5D39KzacZIifYO3aOo9Qp7x/M1jD8KPi9/Ot
roRDIUlWbZzDVzZHfXYjzG+17Y5LZQhIvnbuvTvvq8x+XprG4PgtwPKlL+Hr
8OAF0RkMN2U+d1XLCcdPeko8TjO4314U47aS0CKP/zM+k2GNesbrC4GELu2V
/cYshi/d9idWryUI3Yovtp1h2LHBzl0YRHBMbHnSns2gdBpctHMT4WeO2sU6
l2FEVn+QQyhBnVI1Z1Yeg86kW/wmjDDQxEUTrOP365v3uisIRfP227KzfH9n
lZc4lqCvP+W09xLff1vWVx1H6AkdqTW7zNC7uLAsNp5wWjvNI7+I79tkjP6Q
SPBLKZkmLOH7B47VpCcTomMmX2NXeW9LQoKnkvD9Q7/ocRnvq4hqLVETEG58
13SdoUYSmrtJQ9A8dfKyrOC9qnX+NumEbd6musBb3KfL3/xpBmH43Vefqm9z
n7XLKuOzCAmNY/RyPUPfAyiccwgyh6Gloge833GO9EsuIUg1bl13Nffplap8
zxMsGwUzIwzcJ9TWzaSAUCidJBTXMtyoEXWVFxKavL0iRzUyLJprfjGsmNDm
t3R6xivul/d3tV0JodUYUXvvLfezMAprSwkhHg11PR+53/av9xLLCXcuHLjs
+I2hwWeXqYZzb/jgN+s5/wNTrKPp
"]], LineBox[CompressedData["
1:eJxTTMoPSmViYGCQA2IQPVViQdWpnR/sGcDggb3Ok/U/dx5B8KPaOk92nEfw
t52yyVR7iuAL83/gOPILwed57nqn2PsjnM+yf/Z65TkIfrbJ7puc3p/g/NWe
SQv2fUPwv76WEng27TOcvzXYnXmKyxc4v96jdf6WZwi+4l2vG4tbv8L5VuYt
UySNvsH5MXLnfzJeRvC/nup9VND4Hc6fwRJXEqTyA+Gfe1sXMR1B8FlrG0Ms
C3/C+Qwr49Y/EvoF5xfNWt8rdAjB36vdwSGY9xvOF/Qq0mni+wPn39G9cLly
D4K/YZ69ypO4v3B+7HozQdl/CH5D68LGO6v+wflrX8jO5vP5D+crtYh4sC9D
8KfLc3/9/x/BBwBXi59V
"]],
LineBox[{{0.9986387546022908, 0.4928868535257065}, {
1.0001539296258053`, 0.4928836025797561}, {1.0007619935195393`,
0.492884592191732}, {1.00136124539771, 0.4928868535257065}}]},
Annotation[#,
"Charting`Private`Tag$167129#1"]& ], {}}, {{}, {}}, {{}, {}}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0.4928836025797561},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 2}, {0.4928836025797561, 0.5}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8276006251518087`*^9, 3.827600651278942*^9},
3.8276007661748323`*^9},
CellLabel->"Out[41]=",ExpressionUUID->"6117a909-7fa4-4624-b171-410faacc79d6"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"glft", "[",
RowBox[{"y_", ",", "cc_"}], "]"}], ":=",
RowBox[{"1", "+",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"1", "-",
RowBox[{"2", "*",
RowBox[{"rhotheor", "[",
RowBox[{
RowBox[{"yy", "-",
RowBox[{
RowBox[{"(",
RowBox[{"cc", "+", "1"}], ")"}], "/", "2"}]}], ",",
RowBox[{"cc", "+", "1"}]}], "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"yy", ",", "0", ",", "y"}], "}"}]}], "]"}]}]}], ";"}]], "Input",\
CellChangeTimes->{{3.827600806282653*^9, 3.827600863346588*^9}, {
3.827668322339826*^9, 3.827668322493375*^9}},
CellLabel->"In[48]:=",ExpressionUUID->"444879db-e156-4cbf-adde-da2833b94efc"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"glft", "[",
RowBox[{"y", ",", "1.001"}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.827600894219709*^9, 3.827600918057469*^9}},
CellLabel->"In[49]:=",ExpressionUUID->"290f49ec-b10c-45af-9f5f-2a83b70f1243"],
Cell[BoxData[
TemplateBox[{
"NIntegrate", "ncvb",
"\"NIntegrate failed to converge to prescribed accuracy after \
\\!\\(\\*RowBox[{\\\"9\\\"}]\\) recursive bisections in \
\\!\\(\\*RowBox[{\\\"yy\\\"}]\\) near \\!\\(\\*RowBox[{\\\"{\\\", \\\"yy\\\", \
\\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \
\\\"0.000020427936441543957`\\\", \\\"}\\\"}]\\). NIntegrate obtained \
\\!\\(\\*RowBox[{\\\"0.`\\\"}]\\) and \\!\\(\\*RowBox[{\\\"0.`\\\"}]\\) for \
the integral and error estimates.\"", 2, 49, 10, 18732081420598543121,
"Second kernel"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8276683254199743`*^9},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"facae4bc-f86d-459a-996f-acaa5d14db9a"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxEXHk8Vt8TJlH2JRQqUQlpUVSEkT0KqZA9SZK0oMWWSEklSZJ2tMueUCEV
aUEUpQgJRfHu3tXv3vH79O2fPs/n3nvOnJlnnplz7n1p+O9x2T5JSEhoVFRI
iPzffvvgh5pf283enU3kjI+PwA0lp+PJKukghP9G4ejUkgUnVXL/4czOSMtH
gvx/2H3LzYJRSuk/LDl+1Mt2dvU/PH/D38EXp17+wwcbjSCT3vAPTy+V7xIW
bvqHy3ot3zWZtPzDtcFX1bYMf/yHGVqmsg93t//Dk9gP5NTmd/zDK8b9yjbm
f/uH3x0zaKzT/f4Pq6cOse/97f6Hh1jfuz4t7f2Hc38/eSOT8uMflpl1Z6Sv
r+8fPr3zUeCNef3/MNP8QV/QkYF/OHzZy1LlF4P/8Pf8l6c+aPz+h7nBHy/r
RA79wwvXTBEEPhn+h22zNXYUTf/7Dz/ccNLHzfw/PE2Yspkf9B+u+5y7wTnm
P3y40H19zrn/sMuVZW/fXf4P6yVJrWXe+g+rxLKnSD74D4uF99epF/6HqTtb
Ew0e/YVSg8JcWXI9vjVWayv/Qv5X/eRppH83PxTxqf4LkzyvlUwncLlDVu3+
l3/B+uVntZkETlsZbn6l8S/4Tve8NJ/A1rLaJiO9f6E/qe+vMYGXiSpxRQb/
wrRXZ0vMCTybK1w5489fOGm364YNgcf6v660YP2FuvNawy4EflB1dvkFyRHY
uExt7m6Sj6XR1HtyI+BTNzweRuBj93cWVSmNgOm1XHYkgX0yLJcMqo/AhycR
5icJLB/K0l1tMAKF5UPid0g+zvLV7PEagdGjP9L6CezvvNT129YREKTNyf9L
YMcE4eT2wBHo6jL7wiSw1q8cyvu9I+DuedJzivAofCwdrKk8NgLqj3KFdQi8
dN1+3/S8EXjjmu8XSuDByMQrtrwRWCZsIiUg8G/XhUE3iXFE3WbPmTJpFPxG
p01SFyH8/vH1MjkCO8z9aag6dRRORCm5axJY8+SJq3IKo3BK6ECaDYGbN70L
4c8fBRtLi+0pBNYb3izZvn4UCtzGfWcQ45RvWled7EzkrUBMR4PAls8swsw2
jsKFt5eX6hLYI2XJ11vuBI86Om6vJvDJpeIPwreNgvKli4+9Cax4adxHO5Dw
i/FliUAC3xBmKnwLGgVKdNOiUHL8lt5Iy9BRsNKTs4wlcH/4U3uFw8Q42jdW
XiXw/s5iwauoUUgqV8rKJTDf+l7x4dhRaM8S//2AHH96hmpPwigYtH6fXkmO
f+R0Y/rxUbBYcvB3DYH1BuPj7U4SfrO5mFdP2l+x53dByihIRzld/EjgRo3A
a9vOjYJJQtyPDnI9yV4u09NHIXil20A3Ob/n2srYS6PQ4dPhO0xgwQsIXXZl
FArD772kkOvVW6HZf20Uog7XTmWR8/M1k9fnEvc1BpcKTSbmD1QxE74zCr9+
emmJEvhxoyy19N4oqC1SXiVOYIuVYreD8gh/imUoSxO48Tpvy8yCUWgtj46T
I7DHVJp0c9EoVIv+jJxG4P69v54nlI5CSMiWScoE3v/le8TKx4SOKa7umE5g
/po2naGKUZC1Xn9xBjl/XwG74uUofHn0J5PEHsdPNiQ1EeNdHcbr/X+PxJi0
jIKT8vMrJN7ndkB/9CNhV0D4JRLzqkN+5rSPQuzuVakkTtLedsmtg+B1xMh9
Eiue27JesnMUFlwVzyPxdbaTcPV3ws/D3zNIrOtv82h/7ygsh8BcEpe9Mdmp
9ZPgw/KzN0hssXz5rI6BUTArabxO4veXdT6c+T0KG5dGXyax++Q5iWv+jMIm
vT34fF+IshFjZBSE7U7fIvHeT1J/7lJH4dyd5nNor6nITS/GKOTZ1Z9He2+z
N8mNjcKTRUdxvdNkR6e+5IzCp0FrXE/Ls+QTa/mjYGc6jOtNC5kv1jQ+CsdN
2+6R2EWt5timSRQ4JdpwjcQKbzxEOiZTYINsWjo+f4hx1HcKBbo97pzG5xek
Cv0Up8CL3fln8Pk23SPBUhSYl/8E7VFIfMUfkaHAFp8pE88v94uOkKeAlvVn
9EdaL4fDmUaML+58FZ8/d+FwnDJxf2Mk+kPefOmYqAoFRiRL7pK4+e+bA6fU
KCD7i5FG4tSr2xlysymQec0c4+28Tig8Yw4FAqbO/ExiOW4WVW0uBSavb2vF
5+8Z7rs5nwJWU37gfKnuzSNa2hT4sjhmnQr5/JRdoXm6FHg5rRPHky0T/aO/
iALrmceRL40BN3Y9XkIBj4a92SROmbb6t8kyChyeN+Evx9pPQbUGFNimPPks
iWX27R2wXUmBnY+uob2N6pKB742I+dIgBZ9vvNXnYkKB0TMjOJ9jjPm2z2YU
WOM2FeMnrfe1x3sNBZZzHt8m8buOCL8flhRQyHU/RuLTJ+W+B9lQwKXPDvG6
VQ+8/9pRYMY7/wsklhqw/hbmQAGTj8bIt3cXuj3Y6ykwq0cB+XTaKupLrDMF
AjWscX3raErukzdS4FG3O9ormV3YdnIzBaRdBTkkfuPssFnWnQKO+Xk4XvL4
z9Z0DwoI7LNw/fb5cS6q3hQwbm2sJ7GEt9qH677EeuIW4XrfSJY5zfenAOdR
F+ZLcqVz4/0ACuzoHUJ77XcOrVu6gwKV4b3IV/EZx98+2kmBh/fqjpP4dd0c
+9UhhL8ZTpgfSRFPXteEUsBQoSeexHbzXG1t9lHg9W0K+n9q6+irt2EUeNyW
het5ffSU1YYDFNDIY+N4SUu1XrQdooC8fVoJPv+9Zo1XFAWCvWMdSDwlxbOm
J4YCXtmTp5F6U2fCNNsRR4wvWoD8Pj6U+mw4ngLCM9ZiPtlkLTTZn0gBm1WU
LBKLra2rZJ2ggLbtfvSv6GT9R9JpFDDX9Ud/Ta6+XDD3CnH/gk2YD0UPv4cL
FVNg3a7jeN3nylzjznoKyJ2sRL4aqL5ryXxDAYkz2nhdPDN816b3FBhK3ozz
dynNmizXTCHqmivGq/T8qytvWyhwpfcE5k+yfKjhiU8UOBBt40xiv7PKjRaf
KbB7vhHm2wrp6kBBBwUqup9PIvNB8tSO8YpO4vr1tejP7qlymRHdhH3O0sjP
suPlS/V/UCDN90AR8mny1obhnxQYKxxHffSPF/e/O0iBN6pn0P+rhIo524YI
vtURfQrJ71iP8+p/KXAs6+tPEvdyJ+l9HaWA/+ootL/88IOXGTQKRM3TwflS
WBu9XZgU0PlVgf7YFsFjSLMJvVBbjvFcRctNaeBS4GCwfPpE/q1fkCgg8k+s
EPWp7y+j2lyYCpt5XTdJXBlyzZ0nQgW3pkjUv9TfNpTHYlS4xBtAfd0eNHIy
TJwKRi2zcD7j/ouaS6SoYHhqCOMlF2D+5LcMFQq15CapkvWlZ3DjbXkqvBex
Q/156ntueKsiFb6FvHmIetdplDhrOhWma6a0kXiHZ++sLypUiBaakk9iky/J
ZekzqbDybN4j1E+35U7O6lTIOaeRROLBj18HJDWp4O4dhP545nIsrn4eFY6K
pmI+pTXrqSQsoIJWQzxeD3L8VGSmS4WBGm3EZu9i7Dl6VGKfwsV8mWav9ePR
Eiqc6yzFfBusb4zat4wKwu1yqG9V1gcVFxkS4w/F43rTX6g/HFxJBTu7jhgS
71zz2jrXmArZHhfRPrPqvV2+poR/EzPRHkVTlYNq5lQYfWKN/Ppd+Vy23YIK
e+ZNw/lqVgXfTbOmQuXD+2EkzihTWONoR4Uf7iNHSLzL4MkXcQcq9IHgCunf
muZPeeXrqRDyPgTjqbR79MgOZyqwn93DfAwWl9yovJFYj2MH2l99a77Wq81U
mJpugvqiaGHODnOnwhyJdLR3Z5fHO01PKszrHz2F642MuP7Bm4j/k1jMp2nT
U/fH+VFBIJKEOKjkvvWSbVSQF3+F/Hnm9GpG13YqNPfZPsB4DX8fOh1EhWn7
WcjfHUmcqtW7qLDe2y4Z+TBPKe33bipUuJmhvfLPl2y/tJcKJ2JTcT2B3var
7MKooPB0uQuJn7ADJFkRVPBNDEP75TKOdN06RAUNs1zsR7YvyyraFEWFx8GM
BORzY+kxkVgqtCw9jfkmu6vJrTiOCl4vnJBPAVN+625NoMKYQVcxiStyJgtk
j1MheL84rk/GXP1DVRIVFrUexXht+2aUu/sUMX62Gept+aFNB2emUGG2mxra
L620x/5tKsHf7Z6od/5FJ2dFnifG4xWjPx4TzaF2BpEfe1Owvkn9rnrRnkmF
TjNx5NPW418yjl+mws7zobj+Mk36TsNrVFjVcBX9K1ktY9p3gwpqkjK4fj9P
HbnzOVS49qUYn3/Esvyx5jYVUmYvQvsl0n3KRu9S4eCOl5j/vksPn7z+gAr6
D07vRT18d97LMZ8KGUe7Q1E/d+Yv4RcS+aW/6iTqrWjDpLwSIn4vStBfJTd/
fPIoI/yhuAv9NdVMcFe8ggrxGWOo594dM6LLn1Ch6q8t+qP4wHKnHVXEeNrH
MJ+nTHPUVH5OhWqp2U9J7FUQxHj5ggpKEXuw/hY5JLwOq6NCVFgn8l1s8Opl
zQYqDNceQn96HisP/fCWCg8asrH+F85pXRPXSPB31UHUc9FnfxSXfKCCv9oo
1mOPLVMHO1up0DZ0yojEBQzNJ6fbqLDadgXaOznNNGX1Fyr0Do0gP7csdt/6
+ysVdp3cgPqW/2a/waUuKmyUFUX9FtlxZopdDxVEmMJor7vI3Q7mDypc9lXE
+R9er314q58KzKUuHSSeZNIZt+kXFWK/ScWS2O0za6PIMBWu3tuN+poXrrCg
+C8VbJ5II5+E5Rdx/CjE+GJcXK/rQ9v3snQi/4ZPoT49WOt/o4pJhV+GeZiv
BnoaZsCmQky0QhXmq0z312ouFahCj2tIbEu5dthcQAVuiiLGs7nVe/pzIRqE
xchjPmwpm/lojQgNBOPR0VhvMr+61IrSwEDCBfV+V1TWqMVUGrRaJ2K9o3tv
SXkhQQOFPc/R3hjzGXpW0jTwkHqH+SE2t73hpSwNvk7vRz1LFc3YYa1Ag8NB
s1H/VAY3idYp0iDAMAFx9ptpOTbTabAqKaBJicB6D1vM61Vo8GOHaRTZXzw6
e67LdiYNrIxOYj0z2+8c/Xo2De49mId8rN8kq7pWg7BHrHcO9qsrGx83zKVB
u9V0tPeLypnN9lo0OGrQj3rvz3OgvdGmAb9hvILEQ10S5xwW0sCFbSVMPh/+
vGHxu0XE+AclE8nrgpykd+uW0sBpc+Tl2QQ+cdw2+P0yGhz6uQjXK7dTbKqj
IQ0qdlmhnmU5vLrVuJIGJRseMEk8d/ExSydjGtFv5JZjvOUse5pMaLD1evAX
EhvShI84Aw2o9xuOYvw+1cz8sIYGeqaTUL9sy49UbrCiwdXJu55h/LLM3Fts
aNAnEo3+3xLDZ7ispUHSkmuoB72+T8+3OtDgrLn5CYyfRZT+JkcamItMQT7T
5xk3fXSmQXjKJPR/zBR2yOaNNMh4GXCCXL/Y78cSbZtpkD5bD+1NfXfgrqs7
DQYM5iIfVAoMbdo9aLA9zAr5mX2O/sPNmwZCKiOYD3rhJUc/+9JA2bkD/fHI
db/6Fn8aTH0xHeuJmZH+sy8BhH0Vpjh/vdqoh8cOYj27KvG6syB/rGMnDW5c
83qJ8eveneEZQoO1Qo8n9PSFnsG3UBr8OdRViPG7NfTBax8N7Oo6MP/Ck+7v
6Qwj+Kb3IBLjF7xT2ucADYy8TqG/TqzXftB1iAaJwntRH+WWDtj5RtEgaM6Z
EYyfwu3+7zE0cLcoQr2dywg45hdHg5zjf5Fvee1zNXviafDrdBDG37Cyt3pr
Ig2iUvswXlVXbnr3niDiWf4Qx7c94sf1T6bBsS/dGJ/mreqXfpymQcoqddTH
LVZdKwLO0kB1aCnuB3q1rn7sO0cDe12fOyQOEffavz2dBqI7v2H/zRhSlevP
oMHItzp8Pv3qQP2VS4Q/Wl8hv5c7lR7ZeIUGfzdsQv62CB1dKXGdBv2qltgf
7yteP1JzkwbsWzGod3IBqncO5tJgp8lajF+B0oDP4js0aFppjXriWF+i/PMe
kc8KaujfP4fiGi/n0eDUFDPc757WXX/cpYAGDeKmqKcLv6mYiRcT4zl0YHzf
nOlnVJcS8y8xpGF/ASUPDzymAc9dF/VvKuXI9kWVNKjadRv16E72ull9T2lw
5mk62mOzSeVTVjUNQpyfoz9+ivaf3lBL6E2SL/bXxx4XW019RQMl9h7M97k7
j/Cq6mnwItQB/VOruq404g0NnsUsRv9sfTcjRO89DV7Jqb4gsVDsz7k/mmgQ
/EoU6+f1JcVfL7UQetE6E/lm1hN73vkTDVTWKmB8O9McHKZ8poHzsDnma7TV
DJGqDhp8eXwS46vG7KsM7yT0JfQd1u/KO0X7F3bTwOtOyER92RKr29tLg+eu
W5G/YxIOvZk/aXB/WRLef/Hp9CynQRp4GnOnkvm4IrRvg9gQDXbrbkM+fVIv
En/2hwb+4QzkS/iHmOdhozQ44Twf83Vagv1hXRoN6N0aGI9ig+n6PQwazMnb
j3q8of/H4MUxGiTIxGE+j14svOHIpQE8TUL7zq6NcRcV0GDBcgN8fjF3rdxT
ITowJcvQH+/zlF/vF6HDZcdC1KMQnx9HdMTo0H3+4GsSS8oVruyeSgel0VTU
m/vPo0cyJOmwhj8L6+fasLV31svQ4TBvBe4vB+cp+06Wp0PHSQP0x4m2XuUn
0+jgKTcH66VWUkHjPmU6WHw2jSLxK6Po49oqdJjbyMB+NmDIzuy7Gh0+rZ6B
+iFyVYl5YTYd6pxCsd/Idux9uE6DDvkhwtj/rBEq2C4yjw53jgiwP+guippV
qUWHZMN09O+RbXaf9urQQSdqPvJ9tpLSmQV6dHjX4Yn3P6vrsepaTIeD/C3o
D69D+bx0fTrEKUSgv7g6UaUOBnSw5qg8QT35ahsyaSUdJHf2Y39qdEZxXoUR
HZZGnEJ/fDbr+brHhA5Sh25gvhwcfXheC+hQIt+O/FfOjnToXEOH9U+7+lFP
N9qKpFvRwf5SKtqb5FCeONOWDpH9TshPL0udqbfW0qFq52LUpyWrs5IXraND
0vgTjMek5ZLSZY50oCZ74f2fdKPPmm2gA2+HA+K7mn/k6zfSIdPeAnGUqk+6
kyth762jmE+OCk3Kn93psHflq1ESa0iYX/LzpENYxBnsb+nCRWq/vOmwm8Yw
J/n7mq1xbZ8fHX76TrtD4suUtDkcfzrkRXgi/0J/ieTEb6dDVr6EBYktesLn
SwYR9vypm0fWf6UvP++cDyb89+5YDdkfDDa76s7cTYdXooEj5Hnok9f1ebl7
iPUo9A/JEzilZtWSRfvpUP80Dvm5tfxe0aNwOpi7bUJ/GRSqGpgdpENn3mzU
nyl3T5XVHabDhWx/zJ+O67xVTtF0qJC0xHjnX9z9pD2WDg/P7sZ6evRsl6nf
UTp4HbbTJvdfm0441Qwm0IEuZIL9qPaRGot9x4n4p8Tj+NwD+q/YSXT4fLln
4rwsNNs2/hTBP2YB8uNm4LQ3Eil0iJ5djXwO9zm27nwqHR502WL8bF0ZjWrn
6fAx6YYoiVUdAzfkXqCDxuM9mA9/rNtb9TLpQFllgPpRY2rn+iiLDgn6+li/
zhtWfDa9Sgcj4yaMX+AiXc+663RYsl1Li7TfaP7lTsdsgl/DZxvI61KzpPza
c4n8DJPB/qhbMabX9w7hr1gx5GOJ1N+AwXt0OKcndIyM5/HJvgN78+hwcnk7
6rMHr2knO5+Iv2c7xncR3Xz4aBEdfoRmoV4KDReFSpQS190mY362/tCkpJXR
YZh9Cfl5++v5MLUKYvxoS/TX4dbJzJwndGjvyMbzkXVvIw7pVdEh+HMK8k39
RT+ntIYOI5yFmI/USrcY0xd0WLRhYj9QV/x6/NUrOqgkx2J9uXTfKN7xNR2a
2+diPQzJvj+5/Q3B7xffUH/Ms9RO+L6ng0n/5GrU07TT4oNNdEi1zMB+rf8k
/9TeFjoIaeji/qniaKgM+yMdjl36g/afPvw99Wg7oZd3duB8vvucp0l00OGS
Cw39v2zn8wtp3+hQ86MV/SW6ddkMte90kE5uxPs/u+dk5fTQwb1xJ/ovz1lx
ll4fHQwcO7HfP2KXeL20nw5b6FrovxafIK+lv+hgXPbafA6B50U4qOQN0eEP
VRb3lwdPLW5b8JcOzxdbI35zU/58zigdSul05NfMcrqTOo0OG9Ytx/q3p7Fd
6jKDDmdaWFgfa/sqG5TH6OCcQkG+KXKvHk/j0KHWZQv6L1D+qKUMnw4SliFY
jyoWBAgljxPxqPqCz0uZ2T4TncSAO2Ibykjss0k38uhkBtDfl6A9hcHSK/li
DCjN+ilD8knk6CjtkDgD9E47Yf64XmwtpEsyQH5kop7ffVi2e68Mg9iv+SPm
vLikOyzHgOVT6Oif9R3RAzumMSDSTBH168aob+4PJQY4r9iH9Y0qZrnVdwYD
DopLYbysZmnN/qrKACnqCAvr73Lxr66zGCBWPwX7xd9rhy+2qDPgi+wA6oGJ
X9MmR00GzPRQR36lHCiWfzOPAVVhE+cBPacvNFovYIBruxT2iwY5h04912GA
r9JBXO/xCk87Uz0GTAvxRv99bjITrVjMgFHvxDBy/Qv7NWoN9BlwWaYc54vl
TT5SuJwBZ0fsUL+aFQZX661gwOa6GMx3TZ23Y3dWMcC/bi6uJwLyH81dzYC2
JlcT1N/N5/ZfN2VAmKgk8kk1JHyJmjkDrl7tQXtD4t2GMywYsI+3G/u56kzj
ewrWDEgr/o7xUiiYFZhiy4BNfBruPwNeCc2VsGdAqtEKzJeyrz++J65jwNP2
4InzV2rdFWEnBpyU0S3FejT1/paYDQzgrGdivPJnn1Fmb2TAGZMg5IuQ4d7W
cFcGdCz0Qf3Z6LAxddSdAR+XLDyEerB1xfoQTwZInJBFf48dVJEY9GZAecpn
XK99Cq9umx8Dsurz8Xzxau73hO/+RLxibJDfo5W15p7bGRDqMY7rt/hwi9+2
gwGr1DWwv0gfSKp0CWaAt8cIjj/A33WwMYQB4SvuYj4YKzoZ2O9hwC6nBdhf
ntZdRnm1jwFcOwbqU5e5Uv6acAZ84M5Cf+i7jQU/O8AA6dItyMdju78uMDrM
gMyEeJy/LaGqrzSKAXWV1di/6mTdvLk0lrDfbVc2Ga/owmM+eXEMMCrzwfkb
63aoaScwQDmajv2bRqf955xEBlhKb8H4J9euLticxIADNZORL9Q7esennGKA
S4gOvt/xODPLu+IMA74uT8LrtftlDHalMuDS3as4vq77uMSs8wy4m9AUh/XC
dLSn8QIDBg5kon08zZ7yuEwGPFnugOe1AVNbzi67zIAWjgnuD979qQ3su8oA
z6af2F8btpaYZtwgnp8ShfG5Vp6raJfDgAd1dZh/YtcuDLFvMWBJUhbGJzTh
eO2Du4T9Hx3wenvQwUveDwh/pX6WJP1h7hi0VzafATGGB/H84u7yLbbPCxmQ
8r0Sz4fkVOxnh5Uw4O2YhxV5/2GBMWNeGQMsxifeJ/b+WPiurZwBsxXjUW/t
G2bmJD1hgPng+aPk/cX50pHGVQywGZUswPxIFzgP1zCgvXQE8yH+8MiCay8Y
oPpjAPVoyKdb4FTHgN2WpjIzyfpv9eGTcAMDKh9p4HnYU53avJK3BF5Qifk/
T7YkYXsjwW/taqxPp+k5HtM/MMBvYSDym/4lXb+hleAX0wvrm3d14tSoNga8
/6AZgfUr98B3vS8EH9IuY/+xOHlHWddXIn4d4Whvxh73M6ldDHh2aQbm8/im
tQEWPQy4eQzwfVOQsfFq+g8G8Gz/rx/qC4kdLqHHN13CSbxKdOYvt1+E/nY0
oH03fkvViA8z4NjvFRifqc38jCd/Cf26ug7H3/fo7+7dFAackJLvInFH1ncr
dTrh/+dReH5kEdes9oHJAOobBYzn/e3PqfFsBrwumOgfFByKGwx4DFDU6sH4
RC7NudEvIPj6ho368UMp/WCmMBOsPzOQP+u4xxztJzMhXHYJ9jOl3RHzeWJM
OMwxb8H6VRfIeyjOhMSBW6gfiQ/cWn2lmCC7tu8Aif+m2t2Xl2XCpA8JdVhP
DhgdfSHPJPrIqFlqBK7y1HWPUGSC5d4srKdaa9SWLJjOhCnlLd9R37WkxL6o
MKHj4jLMF5Yk/1vyTCZInBRG+/wof0pM1JngnEnB84rXbV3JfzWYMKtB7zCJ
lz5t2npjHhOeyZSjHmberFnlsoAJHJXnz1H/ThTJTtZlQnvbpInz95Ds/kd6
TIh+r4f+a9lw/tmOJUzImLQF/WW88li6yjImXNEJxPOwNn+VFVcNiOt2bzDe
YSn57XNWMkEz5xPyQ67S8nCuERNc183G/Ubez8+q2iZMuL0lfxnJfzv50KcP
zJiwYNbODeT3Bj9NRHyWrGGCR9n9ZrKfjg/KHC+2ZAK1rXmbIoFnpy+6ucKG
CaNlK4TJ7w8qq2stKu2YYCV1zpXs192G3PpMHZjwYeEr7I/oyn8Sn69n/vv+
J9UifoG183+44VJe8LrN/+FJlLaHGz3+w+HXFxr4B/yH+9fHVe4N/Q+r37rP
Pxj2H3bnfTQ/cug/zFgQ3Dsp6j+ctnE84XgMExytH6B/Fh9Jny8RxyT29yuR