forked from lilianweng/stock-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_fetcher.py
111 lines (87 loc) · 3.14 KB
/
data_fetcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""
Fetch the daily stock prices from Google Finance for stocks in S & P 500.
@author: lilianweng
"""
import click
import os
import pandas as pd
import random
import time
import urllib2
from BeautifulSoup import BeautifulSoup
from datetime import datetime
DATA_DIR = "data"
RANDOM_SLEEP_TIMES = (1, 5)
# This repo "github.com/datasets/s-and-p-500-companies" has some other information about
# S & P 500 companies.
SP500_LIST_URL = "https://raw.githubusercontent.com/datasets/s-and-p-500-companies/master/data/constituents-financials.csv"
SP500_LIST_PATH = os.path.join(DATA_DIR, "constituents-financials.csv")
def _download_sp500_list():
if os.path.exists(SP500_LIST_PATH):
return
f = urllib2.urlopen(SP500_LIST_URL)
print "Downloading ...", SP500_LIST_URL
with open(SP500_LIST_PATH, 'w') as fin:
print >> fin, f.read()
return
def _load_symbols():
_download_sp500_list()
df_sp500 = pd.read_csv(SP500_LIST_PATH)
df_sp500.sort('Market Cap', ascending=False, inplace=True)
stock_symbols = df_sp500['Symbol'].unique().tolist()
print "Loaded %d stock symbols" % len(stock_symbols)
return stock_symbols
def fetch_prices(symbol, out_name):
"""
Fetch daily stock prices for stock `symbol`, since 1980-01-01.
Args:
symbol (str): a stock abbr. symbol, like "GOOG" or "AAPL".
Returns: a bool, whether the fetch is succeeded.
"""
# Format today's date to match Google's finance history api.
now_datetime = datetime.now().strftime("%b+%d,+%Y")
BASE_URL = "https://finance.google.com/finance/historical?output=csv&q={0}&startdate=Jan+1%2C+1980&enddate={1}"
symbol_url = BASE_URL.format(
urllib2.quote(symbol),
urllib2.quote(now_datetime, '+')
)
print "Fetching {} ...".format(symbol)
print symbol_url
try:
f = urllib2.urlopen(symbol_url)
with open(out_name, 'w') as fin:
print >> fin, f.read()
except urllib2.HTTPError:
print "Failed when fetching {}".format(symbol)
return False
data = pd.read_csv(out_name)
if data.empty:
print "Remove {} because the data set is empty.".format(out_name)
os.remove(out_name)
else:
dates = data.iloc[:,0].tolist()
print "# Fetched rows: %d [%s to %s]" % (data.shape[0], dates[-1], dates[0])
# Take a rest
sleep_time = random.randint(*RANDOM_SLEEP_TIMES)
print "Sleeping ... %ds" % sleep_time
time.sleep(sleep_time)
return True
@click.command(help="Fetch stock prices data")
@click.option('--continued', is_flag=True)
def main(continued):
random.seed(time.time())
num_failure = 0
# This is S&P 500 index
#fetch_prices('INDEXSP%3A.INX')
symbols = _load_symbols()
for idx, sym in enumerate(symbols):
out_name = os.path.join(DATA_DIR, sym + ".csv")
if continued and os.path.exists(out_name):
print "Fetched", sym
continue
succeeded = fetch_prices(sym, out_name)
num_failure += int(not succeeded)
if idx % 10 == 0:
print "# Failures so far [%d/%d]: %d" % (idx + 1, len(symbols), num_failure)
if __name__ == "__main__":
main()