-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLT_OHC_T100_time_series.py
executable file
·1031 lines (825 loc) · 39.3 KB
/
MLT_OHC_T100_time_series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 16 09:37:58 2020
@author: root
"""
#%% User input
home_folder = '/home/'
#home_folder = '/Volumes'
#lon_lim = [-100.0,-55.0]
#lat_lim = [10.0,45.0]
lon_lim = [-85.0,-60.0]
lat_lim = [15.0,35.0]
# Server erddap url IOOS glider dap
server = 'https://data.ioos.us/gliders/erddap'
#gliders sg666, sg665, sg668, silbo
gdata_sg665 = 'http://gliders.ioos.us/thredds/dodsC/deployments/aoml/SG665-20190718T1155/SG665-20190718T1155.nc3.nc'
gdata_sg666 = 'http://gliders.ioos.us/thredds/dodsC/deployments/aoml/SG666-20190718T1206/SG666-20190718T1206.nc3.nc'
gdata_sg668 = 'http://gliders.ioos.us/thredds/dodsC/deployments/aoml/SG668-20190819T1217/SG668-20190819T1217.nc3.nc'
#gliders sg666, sg665, sg668, silbo
url_aoml = 'http://gliders.ioos.us/thredds/dodsC/deployments/aoml/'
gdata_sg665 = url_aoml+'SG665-20190718T1155/SG665-20190718T1155.nc3.nc'
gdata_sg666 = url_aoml+'SG666-20190718T1206/SG666-20190718T1206.nc3.nc'
gdata_sg668 = url_aoml+'SG668-20190819T1217/SG668-20190819T1217.nc3.nc'
gdata_sg664 = url_aoml+'SG664-20190716T1218/SG664-20190716T1218.nc3.nc'
gdata_sg663 = url_aoml+'SG663-20190716T1159/SG663-20190716T1159.nc3.nc'
gdata_sg667 = url_aoml+'SG667-20190815T1247/SG667-20190815T1247.nc3.nc'
gdata = gdata_sg665
# forecasting cycle to be used
cycle = '2019082800'
#Time window
#date_ini = '2019/08/28/00/00'
#date_end = '2019/09/02/06/00'
# Bathymetry file
bath_file = home_folder+'aristizabal/bathymetry_files/GEBCO_2014_2D_-100.0_0.0_-10.0_50.0.nc'
# KMZ file
kmz_file_Dorian = home_folder+'aristizabal/KMZ_files/al052019_best_track-5.kmz'
# url for GOFS
url_GOFS = 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_93.0/ts3z'
# Folder where to save figure
#folder_fig = home_folder+'aristizabal/Figures/'
folder_fig = '/www/web/rucool/aristizabal/Figures/'
# folder nc files POM
folder_pom19 = home_folder+'aristizabal/HWRF2019_POM_Dorian/'
folder_pom20 = home_folder+'aristizabal/HWRF2020_POM_Dorian/'
# folde HWRF2020_HYCOM
folder_hycom20 = home_folder+'aristizabal/HWRF2020_HYCOM_Dorian/'
###################\
# folder nc files POM
folder_pom_oper = folder_pom19 + 'HWRF2019_POM_dorian05l.' + cycle + '_pom_files_oper/'
folder_pom_exp = folder_pom20 + 'HWRF2020_POM_dorian05l.' + cycle + '_pom_files_exp/'
prefix_pom = 'dorian05l.' + cycle + '.pom.00'
pom_grid_oper = folder_pom_oper + 'dorian05l.' + cycle + '.pom.grid.nc'
pom_grid_exp = folder_pom_exp + 'dorian05l.' + cycle + '.pom.grid.nc'
# Dorian track files
hwrf_pom_track_oper = folder_pom_oper + 'dorian05l.' + cycle + '.trak.hwrf.atcfunix'
hwrf_pom_track_exp = folder_pom_exp + 'dorian05l.' + cycle + '.trak.hwrf.atcfunix'
##################
# folder ab files HYCOM
folder_hycom_exp = folder_hycom20 + 'HWRF2020_HYCOM_dorian05l.' + cycle + '_hycom_files_exp/'
prefix_hycom = 'dorian05l.' + cycle + '.hwrf_rtofs_hat10_3z'
Dir_HMON_HYCOM = home_folder+'aristizabal/HWRF_RTOFS_Michael_2018/HWRF-Hycom-WW3_exp_Michael/'
# RTOFS grid file name
hycom_grid_exp = Dir_HMON_HYCOM + 'hwrf_rtofs_hat10.basin.regional.grid'
# Dorian track files
hwrf_hycom_track_exp = folder_hycom_exp + 'dorian05l.' + cycle + '.trak.hwrf.atcfunix'
#%%
from matplotlib import pyplot as plt
import numpy as np
import xarray as xr
import netCDF4
from netCDF4 import Dataset
from datetime import datetime, timedelta
import matplotlib.dates as mdates
import sys
import seawater as sw
import os
import os.path
import glob
from bs4 import BeautifulSoup
from zipfile import ZipFile
#sys.path.append('/Users/aristizabal/Desktop/MARACOOS_project/Maria_scripts/All_code/Remote_repos/glider_model_comparisons_Python')
sys.path.append('/home/aristizabal/glider_model_comparisons_Python')
from read_glider_data import read_glider_data_thredds_server
#from process_glider_data import grid_glider_data_thredd
import sys
#sys.path.append('/Users/aristizabal/Desktop/MARACOOS_project/NCEP_scripts')
sys.path.append('/home/aristizabal/NCEP_scripts')
from utils4HYCOM import readBinz, readgrids
# Increase fontsize of labels globally
plt.rc('xtick',labelsize=14)
plt.rc('ytick',labelsize=14)
plt.rc('legend',fontsize=14)
#%% Function Conversion from glider longitude and latitude to GOFS convention
def glider_coor_to_GOFS_coord(long,latg):
target_lon = np.empty((len(long),))
target_lon[:] = np.nan
for i,ii in enumerate(long):
if ii < 0:
target_lon[i] = 360 + ii
else:
target_lon[i] = ii
target_lat = latg
return target_lon, target_lat
#%% Function Conversion from GOFS convention to glider longitude and latitude
def GOFS_coor_to_glider_coord(lon_GOFS,lat_GOFS):
lon_GOFSg = np.empty((len(lon_GOFS),))
lon_GOFSg[:] = np.nan
for i in range(len(lon_GOFS)):
if lon_GOFS[i] > 180:
lon_GOFSg[i] = lon_GOFS[i] - 360
else:
lon_GOFSg[i] = lon_GOFS[i]
lat_GOFSg = lat_GOFS
return lon_GOFSg, lat_GOFSg
#%% Function Grid glider variables according to depth
def varsg_gridded(depth,time,temp,salt,dens,delta_z):
depthg_gridded = np.arange(0,np.nanmax(depth),delta_z)
tempg_gridded = np.empty((len(depthg_gridded),len(time)))
tempg_gridded[:] = np.nan
saltg_gridded = np.empty((len(depthg_gridded),len(time)))
saltg_gridded[:] = np.nan
densg_gridded = np.empty((len(depthg_gridded),len(time)))
densg_gridded[:] = np.nan
for t,tt in enumerate(time):
depthu,oku = np.unique(depth[:,t],return_index=True)
tempu = temp[oku,t]
saltu = salt[oku,t]
densu = dens[oku,t]
okdd = np.isfinite(depthu)
depthf = depthu[okdd]
tempf = tempu[okdd]
saltf = saltu[okdd]
densf = densu[okdd]
okt = np.isfinite(tempf)
if np.sum(okt) < 3:
temp[:,t] = np.nan
else:
okd = np.logical_and(depthg_gridded >= np.min(depthf[okt]),\
depthg_gridded < np.max(depthf[okt]))
tempg_gridded[okd,t] = np.interp(depthg_gridded[okd],depthf[okt],tempf[okt])
oks = np.isfinite(saltf)
if np.sum(oks) < 3:
saltg_gridded[:,t] = np.nan
else:
okd = np.logical_and(depthg_gridded >= np.min(depthf[okt]),\
depthg_gridded < np.max(depthf[okt]))
saltg_gridded[okd,t] = np.interp(depthg_gridded[okd],depthf[oks],saltf[oks])
okdd = np.isfinite(densf)
if np.sum(okdd) < 3:
densg_gridded[:,t] = np.nan
else:
okd = np.logical_and(depthg_gridded >= np.min(depthf[okdd]),\
depthg_gridded < np.max(depthf[okdd]))
densg_gridded[okd,t] = np.interp(depthg_gridded[okd],depthf[okdd],densf[okdd])
return depthg_gridded, tempg_gridded, saltg_gridded, densg_gridded
#%% Function Getting glider transect from GOFS
def get_glider_transect_from_GOFS(depth_GOFS,oktime_GOFS,oklon_GOFS,oklat_GOFS):
print('Getting glider transect from GOFS')
target_temp_GOFS = np.empty((len(depth_GOFS),len(oktime_GOFS[0])))
target_temp_GOFS[:] = np.nan
target_salt_GOFS = np.empty((len(depth_GOFS),len(oktime_GOFS[0])))
target_salt_GOFS[:] = np.nan
for i in range(len(oktime_GOFS[0])):
print(len(oktime_GOFS[0]),' ',i)
target_temp_GOFS[:,i] = GOFS.variables['water_temp'][oktime_GOFS[0][i],:,oklat_GOFS[i],oklon_GOFS[i]]
target_salt_GOFS[:,i] = GOFS.variables['salinity'][oktime_GOFS[0][i],:,oklat_GOFS[i],oklon_GOFS[i]]
return target_temp_GOFS,target_salt_GOFS
#%% Function Getting glider transect from POM
def get_glider_transect_from_POM(folder,prefix,zlev,zmatrix_pom,lon_pom,lat_pom,tstamp_glider,long,latg):
ncfiles = sorted(glob.glob(os.path.join(folder,prefix+'*.nc')))
target_temp_POM = np.empty((len(zlev),len(ncfiles)))
target_temp_POM[:] = np.nan
target_salt_POM = np.empty((len(zlev),len(ncfiles)))
target_salt_POM[:] = np.nan
target_dens_POM = np.empty((len(zlev),len(ncfiles)))
target_dens_POM[:] = np.nan
target_depth_POM = np.empty((len(zlev),len(ncfiles)))
target_depth_POM[:] = np.nan
time_POM = []
for x,file in enumerate(ncfiles):
print(x)
pom = xr.open_dataset(file)
tpom = pom['time'][:]
timestamp_pom = mdates.date2num(tpom)[0]
time_POM.append(mdates.num2date(timestamp_pom))
# Interpolating latg and longlider into RTOFS grid
sublonpom = np.interp(timestamp_pom,tstamp_glider,long)
sublatpom = np.interp(timestamp_pom,tstamp_glider,latg)
oklonpom = np.int(np.round(np.interp(sublonpom,lon_pom[0,:],np.arange(len(lon_pom[0,:])))))
oklatpom = np.int(np.round(np.interp(sublatpom,lat_pom[:,0],np.arange(len(lat_pom[:,0])))))
target_temp_POM[:,x] = np.asarray(pom['t'][0,:,oklatpom,oklonpom])
target_salt_POM[:,x] = np.asarray(pom['s'][0,:,oklatpom,oklonpom])
target_rho_pom = np.asarray(pom['rho'][0,:,oklatpom,oklonpom])
target_dens_POM[:,x] = target_rho_pom * 1000 + 1000
target_depth_POM[:,x] = zmatrix_pom[oklatpom,oklonpom,:].T
target_temp_POM[target_temp_POM==0] = np.nan
target_salt_POM[target_salt_POM==0] = np.nan
target_dens_POM[target_dens_POM==1000.0] = np.nan
return time_POM, target_temp_POM, target_salt_POM, target_dens_POM, target_depth_POM
#%%
def get_glider_transect_from_HYCOM(folder_hycom,prefix,nz,lon_hycom,lat_hycom,var,timestamp_glider,lon_glider,lat_glider):
afiles = sorted(glob.glob(os.path.join(folder_hycom,prefix+'*.a')))
target_var_hycom = np.empty((nz,len(afiles)))
target_var_hycom[:] = np.nan
time_hycom = []
for x, file in enumerate(afiles):
print(x)
#lines=[line.rstrip() for line in open(file[:-2]+'.b')]
#Reading time stamp
year = int(file.split('/')[-1].split('.')[1][0:4])
month = int(file.split('/')[-1].split('.')[1][4:6])
day = int(file.split('/')[-1].split('.')[1][6:8])
hour = int(file.split('/')[-1].split('.')[1][8:10])
dt = int(file.split('/')[-1].split('.')[3][1:])
timestamp_hycom = mdates.date2num(datetime(year,month,day,hour)) + dt/24
time_hycom.append(mdates.num2date(timestamp_hycom))
# Interpolating latg and longlider into HYCOM grid
sublon_hycom = np.interp(timestamp_hycom,timestamp_glider,lon_glider)
sublat_hycom = np.interp(timestamp_hycom,timestamp_glider,lat_glider)
oklon_hycom = np.int(np.round(np.interp(sublon_hycom,lon_hycom[0,:],np.arange(len(lon_hycom[0,:])))))
oklat_hycom = np.int(np.round(np.interp(sublat_hycom,lat_hycom[:,0],np.arange(len(lat_hycom[:,0])))))
# Reading 3D variable from binary file
var_hycom = readBinz(file[:-2],'3z',var)
#ts=readBin(afile,'archive','temp')
target_var_hycom[:,x] = var_hycom[oklat_hycom,oklon_hycom,:]
time_hycom = np.asarray(time_hycom)
#timestamp_hycom = mdates.date2num(time_hycom)
return target_var_hycom, time_hycom
#%% Calculation of mixed layer depth based on dt, Tmean: mean temp within the
# mixed layer and td: temp at 1 meter below the mixed layer
def MLD_temp_and_dens_criteria(dt,drho,time,depth,temp,salt,dens):
MLD_temp_crit = np.empty(len(time))
MLD_temp_crit[:] = np.nan
Tmean_temp_crit = np.empty(len(time))
Tmean_temp_crit[:] = np.nan
Smean_temp_crit = np.empty(len(time))
Smean_temp_crit[:] = np.nan
Td_temp_crit = np.empty(len(time))
Td_temp_crit[:] = np.nan
MLD_dens_crit = np.empty(len(time))
MLD_dens_crit[:] = np.nan
Tmean_dens_crit = np.empty(len(time))
Tmean_dens_crit[:] = np.nan
Smean_dens_crit = np.empty(len(time))
Smean_dens_crit[:] = np.nan
Td_dens_crit = np.empty(len(time))
Td_dens_crit[:] = np.nan
for t,tt in enumerate(time):
if depth.ndim == 1:
d10 = np.where(depth >= 10)[0][0]
if depth.ndim == 2:
d10 = np.where(depth[:,t] >= -10)[0][-1]
T10 = temp[d10,t]
delta_T = T10 - temp[:,t]
ok_mld_temp = np.where(delta_T <= dt)[0]
rho10 = dens[d10,t]
delta_rho = -(rho10 - dens[:,t])
ok_mld_rho = np.where(delta_rho <= drho)[0]
if ok_mld_temp.size == 0:
MLD_temp_crit[t] = np.nan
Td_temp_crit[t] = np.nan
Tmean_temp_crit[t] = np.nan
Smean_temp_crit[t] = np.nan
else:
if depth.ndim == 1:
MLD_temp_crit[t] = depth[ok_mld_temp[-1]]
ok_mld_plus1m = np.where(depth >= depth[ok_mld_temp[-1]] + 1)[0][0]
if depth.ndim == 2:
MLD_temp_crit[t] = depth[ok_mld_temp[-1],t]
ok_mld_plus1m = np.where(depth >= depth[ok_mld_temp[-1],t] + 1)[0][0]
Td_temp_crit[t] = temp[ok_mld_plus1m,t]
Tmean_temp_crit[t] = np.nanmean(temp[ok_mld_temp,t])
Smean_temp_crit[t] = np.nanmean(salt[ok_mld_temp,t])
if ok_mld_rho.size == 0:
MLD_dens_crit[t] = np.nan
Td_dens_crit[t] = np.nan
Tmean_dens_crit[t] = np.nan
Smean_dens_crit[t] = np.nan
else:
if depth.ndim == 1:
MLD_dens_crit[t] = depth[ok_mld_rho[-1]]
ok_mld_plus1m = np.where(depth >= depth[ok_mld_rho[-1]] + 1)[0][0]
if depth.ndim == 2:
MLD_dens_crit[t] = depth[ok_mld_rho[-1],t]
ok_mld_plus1m = np.where(depth >= depth[ok_mld_rho[-1],t] + 1)[0][0]
Td_dens_crit[t] = temp[ok_mld_plus1m,t]
Tmean_dens_crit[t] = np.nanmean(temp[ok_mld_rho,t])
Smean_dens_crit[t] = np.nanmean(salt[ok_mld_rho,t])
return MLD_temp_crit,Tmean_temp_crit,Smean_temp_crit,Td_temp_crit,\
MLD_dens_crit,Tmean_dens_crit,Smean_dens_crit,Td_dens_crit
#%% Function Ocean Heat Content
def OHC_surface(time,temp,depth,dens):
cp = 3985 #Heat capacity in J/(kg K)
OHC = np.empty((len(time)))
OHC[:] = np.nan
for t,tt in enumerate(time):
ok26 = temp[:,t] >= 26
if len(depth[ok26]) != 0:
if np.nanmin(np.abs(depth[ok26]))>10:
OHC[t] = np.nan
else:
rho0 = np.nanmean(dens[ok26,t])
if depth.ndim == 1:
OHC[t] = np.abs(cp * rho0 * np.trapz(temp[ok26,t]-26,depth[ok26]))
if depth.ndim == 2:
OHC[t] = np.abs(cp * rho0 * np.trapz(temp[ok26,t]-26,depth[ok26,t]))
else:
OHC[t] = np.nan
return OHC
#%%
def depth_aver_top_100(depth,var):
varmean100 = np.empty(var.shape[1])
varmean100[:] = np.nan
if depth.ndim == 1:
okd = np.abs(depth) <= 100
if len(depth[okd]) != 0:
for t in np.arange(var.shape[1]):
if len(np.where(np.isnan(var[okd,t]))[0])>10:
varmean100[t] = np.nan
else:
varmean100[t] = np.nanmean(var[okd,t],0)
else:
for t in np.arange(depth.shape[1]):
okd = np.abs(depth[:,t]) <= 100
if len(depth[okd,t]) != 0:
if len(np.where(np.isnan(var[okd,t]))[0])>10:
varmean100[t] = np.nan
else:
varmean100[t] = np.nanmean(var[okd,t])
else:
varmean100[t] = np.nan
return varmean100
#%% Get storm track from HWRF/POM output
def get_storm_track_POM(file_track):
ff = open(file_track,'r')
f = ff.readlines()
latt = []
lont = []
lead_time = []
for l in f:
lat = float(l.split(',')[6][0:4])/10
if l.split(',')[6][4] == 'N':
lat = lat
else:
lat = -lat
lon = float(l.split(',')[7][0:5])/10
if l.split(',')[7][4] == 'E':
lon = lon
else:
lon = -lon
latt.append(lat)
lont.append(lon)
lead_time.append(int(l.split(',')[5][1:4]))
latt = np.asarray(latt)
lont = np.asarray(lont)
lead_time, ind = np.unique(lead_time,return_index=True)
lat_track = latt[ind]
lon_track = lont[ind]
return lon_track, lat_track, lead_time
#%% Read best storm track from kmz file
def read_kmz_file_storm_best_track(kmz_file):
os.system('cp ' + kmz_file + ' ' + kmz_file[:-3] + 'zip')
os.system('unzip -o ' + kmz_file + ' -d ' + kmz_file[:-4])
kmz = ZipFile(kmz_file[:-3]+'zip', 'r')
kml_file = kmz_file.split('/')[-1].split('_')[0] + '.kml'
kml_best_track = kmz.open(kml_file, 'r').read()
# best track coordinates
soup = BeautifulSoup(kml_best_track,'html.parser')
lon_best_track = np.empty(len(soup.find_all("point")))
lon_best_track[:] = np.nan
lat_best_track = np.empty(len(soup.find_all("point")))
lat_best_track[:] = np.nan
for i,s in enumerate(soup.find_all("point")):
lon_best_track[i] = float(s.get_text("coordinates").split('coordinates')[1].split(',')[0])
lat_best_track[i] = float(s.get_text("coordinates").split('coordinates')[1].split(',')[1])
# get time stamp
time_best_track = []
for i,s in enumerate(soup.find_all("atcfdtg")):
tt = datetime.strptime(s.get_text(' '),'%Y%m%d%H')
time_best_track.append(tt)
time_best_track = np.asarray(time_best_track)
# get type
wind_int_mph = []
for i,s in enumerate(soup.find_all("intensitymph")):
wind_int_mph.append(s.get_text(' '))
wind_int_mph = np.asarray(wind_int_mph)
wind_int_mph = wind_int_mph.astype(float)
wind_int_kt = []
for i,s in enumerate(soup.find_all("intensity")):
wind_int_kt.append(s.get_text(' '))
wind_int_kt = np.asarray(wind_int_kt)
wind_int_kt = wind_int_kt.astype(float)
cat = []
for i,s in enumerate(soup.find_all("styleurl")):
cat.append(s.get_text('#').split('#')[-1])
cat = np.asarray(cat)
return lon_best_track, lat_best_track, time_best_track, wind_int_mph, wind_int_kt, cat
#%% Calculate time series of potential Energy Anomaly over the top 100 m
def Potential_Energy_Anomaly(time,depth,density):
g = 9.8 #m/s
PEA = np.empty((len(time)))
PEA[:] = np.nan
for t,tstamp in enumerate(time):
print(t)
if np.ndim(depth) == 2:
dindex = np.fliplr(np.where(np.asarray(np.abs(depth[:,t])) <= 100))[0]
else:
dindex = np.fliplr(np.where(np.asarray(np.abs(depth)) <= 100))[0]
if len(dindex) == 0:
PEA[t] = np.nan
else:
if np.ndim(depth) == 2:
zz = np.asarray(np.abs(depth[dindex,t]))
else:
zz = np.asarray(np.abs(depth[dindex]))
denss = np.asarray(density[dindex,t])
ok = np.isfinite(denss)
z = zz[ok]
dens = denss[ok]
if len(z)==0 or len(dens)==0 or np.min(zz) > 10:
PEA[t] = np.nan
else:
if z[-1] - z[0] > 0:
# So PEA is < 0
#sign = -1
# Adding 0 to sigma integral is normalized
z = np.append(0,z)
else:
# So PEA is < 0
#sign = 1
# Adding 0 to sigma integral is normalized
z = np.flipud(z)
z = np.append(0,z)
dens = np.flipud(dens)
# adding density at depth = 0
densit = np.interp(z,z[1:],dens)
densit = np.flipud(densit)
# defining sigma
max_depth = np.nanmax(zz[ok])
sigma = -1*z/max_depth
sigma = np.flipud(sigma)
rhomean = np.trapz(densit,sigma,axis=0)
drho = rhomean-densit
torque = drho * sigma
PEA[t] = g* max_depth * np.trapz(torque,sigma,axis=0)
#print(max_depth, ' ',PEA[t])
return PEA
#%% Read POM grid
print('Retrieving coordinates from POM')
POM_grid_oper = xr.open_dataset(pom_grid_oper,decode_times=False)
lon_pom_oper = np.asarray(POM_grid_oper['east_e'][:])
lat_pom_oper = np.asarray(POM_grid_oper['north_e'][:])
zlev_pom_oper = np.asarray(POM_grid_oper['zz'][:])
hpom_oper = np.asarray(POM_grid_oper['h'][:])
zmatrix = np.dot(hpom_oper.reshape(-1,1),zlev_pom_oper.reshape(1,-1))
zmatrix_pom_oper = zmatrix.reshape(hpom_oper.shape[0],hpom_oper.shape[1],zlev_pom_oper.shape[0])
POM_grid_exp = xr.open_dataset(pom_grid_exp,decode_times=False)
lon_pom_exp = np.asarray(POM_grid_exp['east_e'][:])
lat_pom_exp = np.asarray(POM_grid_exp['north_e'][:])
zlev_pom_exp = np.asarray(POM_grid_exp['zz'][:])
hpom_exp = np.asarray(POM_grid_exp['h'][:])
zmatrix = np.dot(hpom_exp.reshape(-1,1),zlev_pom_exp.reshape(1,-1))
zmatrix_pom_exp = zmatrix.reshape(hpom_exp.shape[0],hpom_exp.shape[1],zlev_pom_exp.shape[0])
#%% Read GOFS 3.1 grid
#Time window
date_ini = cycle[0:4]+'/'+cycle[4:6]+'/'+cycle[6:8]+'/'+cycle[8:]+'/00/00'
tini = datetime.strptime(date_ini,'%Y/%m/%d/%H/%M/%S')
#tend = tini + timedelta(hours=120)
tend = tini + timedelta(hours=126)
date_end = tend.strftime('%Y/%m/%d/%H/%M/%S')
print('Retrieving coordinates from GOFS')
GOFS = xr.open_dataset(url_GOFS,decode_times=False)
tt_G = GOFS.time
t_G = netCDF4.num2date(tt_G[:],tt_G.units)
tmin = datetime.strptime(date_ini[0:-6],'%Y/%m/%d/%H')
tmax = datetime.strptime(date_end[0:-6],'%Y/%m/%d/%H')
oktime_GOFS = np.where(np.logical_and(t_G >= tmin, t_G <= tmax))
time_GOFS = np.asarray(t_G[oktime_GOFS])
#timestamp_GOFS = mdates.date2num(time_GOFS)
timestamp_GOFS = [mdates.date2num(datetime.strptime(str(t),t.format)) for t in time_GOFS]
lat_G = np.asarray(GOFS.lat[:])
lon_G = np.asarray(GOFS.lon[:])
# Conversion from glider longitude and latitude to GOFS convention
lon_limG, lat_limG = glider_coor_to_GOFS_coord(lon_lim,lat_lim)
oklat_GOFS = np.where(np.logical_and(lat_G >= lat_limG[0], lat_G <= lat_limG[1]))
oklon_GOFS = np.where(np.logical_and(lon_G >= lon_limG[0], lon_G <= lon_limG[1]))
lat_GOFS = lat_G[oklat_GOFS]
lon_GOFS = lon_G[oklon_GOFS]
depth_GOFS = np.asarray(GOFS.depth[:])
# Conversion from GOFS longitude and latitude to glider convention
lon_GOFSg, lat_GOFSg = GOFS_coor_to_glider_coord(lon_GOFS,lat_GOFS)
#%% Reading HYCOM grid
# Reading lat and lon
lines_grid = [line.rstrip() for line in open(hycom_grid_exp+'.b')]
lon_hycom = np.array(readgrids(hycom_grid_exp,'plon:',[0]))
lat_hycom = np.array(readgrids(hycom_grid_exp,'plat:',[0]))
# Extracting the longitudinal and latitudinal size array
idm=int([line.split() for line in lines_grid if 'longitudinal' in line][0][0])
jdm=int([line.split() for line in lines_grid if 'latitudinal' in line][0][0])
afiles = sorted(glob.glob(os.path.join(folder_hycom_exp,prefix_hycom+'*.a')))
# Reading depths
lines=[line.rstrip() for line in open(afiles[0][:-2]+'.b')]
z = []
for line in lines[6:]:
if line.split()[2]=='temp':
#print(line.split()[1])
z.append(float(line.split()[1]))
depth_HYCOM_exp = np.asarray(z)
nz = len(depth_HYCOM_exp)
#%% Reading bathymetry data
ncbath = Dataset(bath_file)
bath_lat = ncbath.variables['lat'][:]
bath_lon = ncbath.variables['lon'][:]
bath_elev = ncbath.variables['elevation'][:]
oklatbath = np.logical_and(bath_lat >= lat_lim[0],bath_lat <= lat_lim[-1])
oklonbath = np.logical_and(bath_lon >= lon_lim[0],bath_lon <= lon_lim[-1])
bath_latsub = bath_lat[oklatbath]
bath_lonsub = bath_lon[oklonbath]
bath_elevs = bath_elev[oklatbath,:]
bath_elevsub = bath_elevs[:,oklonbath]
#%% Reading glider data
#Time window
date_ini = cycle[0:4]+'/'+cycle[4:6]+'/'+cycle[6:8]+'/'+cycle[8:]+'/00/00'
tini = datetime.strptime(date_ini,'%Y/%m/%d/%H/%M/%S')
tend = tini + timedelta(hours=120)
date_end = tend.strftime('%Y/%m/%d/%H/%M/%S')
url_glider = gdata
var_name = 'temperature'
scatter_plot = 'no'
kwargs = dict(date_ini=date_ini[0:-6],date_end=date_end[0:-6])
varg, timeg, latg, long, depthg, dataset_id = \
read_glider_data_thredds_server(url_glider,var_name,scatter_plot)
tempg = varg
var_name = 'salinity'
varg, timeg, latg, long, depthg, dataset_id = \
read_glider_data_thredds_server(url_glider,var_name,scatter_plot)
saltg = varg
var_name = 'density'
varg, timeg, latg, long, depthg, dataset_id = \
read_glider_data_thredds_server(url_glider,var_name,scatter_plot)
densg = varg
depthg = depthg
#%% Grid glider variables according to depth
delta_z = 0.5
depthg_gridded,tempg_gridded,saltg_gridded,densg_gridded = \
varsg_gridded(depthg,timeg,tempg,saltg,densg,delta_z)
#%% Getting glider transect from GOFS
# Conversion from glider longitude and latitude to GOFS convention
target_lon, target_lat = glider_coor_to_GOFS_coord(long,latg)
# Changing times to timestamp
tstamp_glider = [mdates.date2num(timeg[i]) for i in np.arange(len(timeg))]
#tstamp_model = [mdates.date2num(time_GOFS[i]) for i in np.arange(len(time_GOFS))]
tstamp_model = [mdates.date2num(datetime.strptime(str(t),t.format)) for t in time_GOFS]
# interpolating glider lon and lat to lat and lon on model time
sublon_GOFS = np.interp(tstamp_model,tstamp_glider,target_lon)
sublat_GOFS = np.interp(tstamp_model,tstamp_glider,target_lat)
# Conversion from GOFS convention to glider longitude and latitude
sublon_GOFSg,sublat_GOFSg = GOFS_coor_to_glider_coord(sublon_GOFS,sublat_GOFS)
# getting the model grid positions for sublonm and sublatm
oklon_GOFS = np.round(np.interp(sublon_GOFS,lon_G,np.arange(len(lon_G)))).astype(int)
oklat_GOFS = np.round(np.interp(sublat_GOFS,lat_G,np.arange(len(lat_G)))).astype(int)
# Getting glider transect from model
target_temp_GOFS, target_salt_GOFS = \
get_glider_transect_from_GOFS(depth_GOFS,oktime_GOFS,oklon_GOFS,oklat_GOFS)
#%% Calculate density for GOFS
target_dens_GOFS = sw.dens(target_salt_GOFS,target_temp_GOFS,np.tile(depth_GOFS,(len(time_GOFS),1)).T)
#%% Retrieve glider transect from POM operational
tstamp_glider = [mdates.date2num(timeg[i]) for i in np.arange(len(timeg))]
folder_pom = folder_pom_oper
prefix = prefix_pom
zlev = zlev_pom_oper
zmatrix_pom = zmatrix_pom_oper
lon_pom = lon_pom_oper
lat_pom = lat_pom_oper
tstamp_glider = tstamp_glider
long = long
latg = latg
time_POM_oper, target_temp_POM_oper, target_salt_POM_oper, \
target_dens_POM_oper, target_depth_POM_oper = \
get_glider_transect_from_POM(folder_pom,prefix,zlev,zmatrix_pom,lon_pom,lat_pom,\
tstamp_glider,long,latg)
timestamp_POM_oper = mdates.date2num(time_POM_oper)
#%% Retrieve glider transect from POM experimental
tstamp_glider = [mdates.date2num(timeg[i]) for i in np.arange(len(timeg))]
folder_pom = folder_pom_exp
prefix = prefix_pom
zlev = zlev_pom_exp
zmatrix_pom = zmatrix_pom_exp
lon_pom = lon_pom_exp
lat_pom = lat_pom_exp
tstamp_glider = tstamp_glider
long = long
latg = latg
time_POM_exp, target_temp_POM_exp, target_salt_POM_exp,\
target_dens_POM_exp, target_depth_POM_exp = \
get_glider_transect_from_POM(folder_pom,prefix,zlev,zmatrix_pom,lon_pom,lat_pom,\
tstamp_glider,long,latg)
timestamp_POM_exp = mdates.date2num(time_POM_exp)
#%% Get glider transect from HYCOM
folder_hycom = folder_hycom_exp
prefix = prefix_hycom
# Changing times to timestamp
tstamp_glider = [mdates.date2num(timeg[i]) for i in np.arange(len(timeg))]
# Conversion from glider longitude and latitude to GOFS convention
target_lonG, target_latG = glider_coor_to_GOFS_coord(long,latg)
lon_glider = target_lonG
lat_glider = target_latG
var = 'temp'
target_temp_HYCOM_exp, time_HYCOM_exp = \
get_glider_transect_from_HYCOM(folder_hycom,prefix,nz,\
lon_hycom,lat_hycom,var,tstamp_glider,lon_glider,lat_glider)
var = 'salinity'
target_salt_HYCOM_exp, _ = \
get_glider_transect_from_HYCOM(folder_hycom,prefix,nz,\
lon_hycom,lat_hycom,var,tstamp_glider,lon_glider,lat_glider)
#%% Calculate density for HYCOM
target_dens_HYCOM_exp = sw.dens(target_salt_HYCOM_exp,target_temp_HYCOM_exp,np.tile(depth_HYCOM_exp,(len(time_HYCOM_exp),1)).T)
#%% Calculation of mixed layer depth based on temperature and density critria
# Tmean: mean temp within the mixed layer and
# td: temp at 1 meter below the mixed layer
dt = 0.2
drho = 0.125
# for glider data
MLD_temp_crit_glid, _, _, _, MLD_dens_crit_glid, Tmean_dens_crit_glid, Smean_dens_crit_glid, _ = \
MLD_temp_and_dens_criteria(dt,drho,timeg,depthg_gridded,tempg_gridded,saltg_gridded,densg_gridded)
# for GOFS 3.1 output
MLD_temp_crit_GOFS, _, _, _, MLD_dens_crit_GOFS, Tmean_dens_crit_GOFS, Smean_dens_crit_GOFS, _ = \
MLD_temp_and_dens_criteria(dt,drho,time_GOFS,depth_GOFS,target_temp_GOFS,target_salt_GOFS,target_dens_GOFS)
# for POM operational
MLD_temp_crit_POM_oper, _, _, _, MLD_dens_crit_POM_oper, Tmean_dens_crit_POM_oper, Smean_dens_crit_POM_oper, _ = \
MLD_temp_and_dens_criteria(dt,drho,timestamp_POM_oper,target_depth_POM_oper,target_temp_POM_oper,target_salt_POM_oper,target_dens_POM_oper)
# for POM experimental
MLD_temp_crit_POM_exp, _, _, _, MLD_dens_crit_POM_exp, Tmean_dens_crit_POM_exp, Smean_dens_crit_POM_exp, _ = \
MLD_temp_and_dens_criteria(dt,drho,timestamp_POM_exp,target_depth_POM_exp,target_temp_POM_exp,target_salt_POM_exp,target_dens_POM_exp)
# for HYCOM experimental
timestamp_HYCOM_exp = mdates.date2num(time_HYCOM_exp)
MLD_temp_crit_HYCOM_exp, _, _, _, MLD_dens_crit_HYCOM_exp, Tmean_dens_crit_HYCOM_exp, Smean_dens_crit_HYCOM_exp, _ = \
MLD_temp_and_dens_criteria(dt,drho,timestamp_HYCOM_exp,depth_HYCOM_exp,target_temp_HYCOM_exp,target_salt_HYCOM_exp,target_dens_HYCOM_exp)
#%% Surface Ocean Heat Content
# glider
OHC_glid = OHC_surface(timeg,tempg_gridded,depthg_gridded,densg_gridded)
# GOFS
OHC_GOFS = OHC_surface(time_GOFS,target_temp_GOFS,depth_GOFS,target_dens_GOFS)
# POM operational
OHC_POM_oper = OHC_surface(timestamp_POM_oper,target_temp_POM_oper,target_depth_POM_oper,target_dens_POM_oper)
# POM experimental
OHC_POM_exp = OHC_surface(timestamp_POM_exp,target_temp_POM_exp,target_depth_POM_exp,target_dens_POM_exp)
# HYCOM experimental
OHC_HYCOM_exp = OHC_surface(timestamp_HYCOM_exp,target_temp_HYCOM_exp,depth_HYCOM_exp,target_dens_HYCOM_exp)
#%% Calculate T100
# glider
T100_glid = depth_aver_top_100(depthg_gridded,tempg_gridded)
# GOFS
T100_GOFS = depth_aver_top_100(depth_GOFS,target_temp_GOFS)
# POM operational
T100_POM_oper = depth_aver_top_100(target_depth_POM_oper,target_temp_POM_oper)
# POM experimental
T100_POM_exp = depth_aver_top_100(target_depth_POM_exp,target_temp_POM_exp)
# HYCOM experimental
T100_HYCOM_exp = depth_aver_top_100(depth_HYCOM_exp,target_temp_HYCOM_exp)
#%% OHC figure
oktimeg_gofs = np.round(np.interp(tstamp_model,tstamp_glider,np.arange(len(tstamp_glider)))).astype(int)
#OHCg_to31 = OHCg[oktimeg_gofs]
oktimeg_pom_oper = np.round(np.interp(timestamp_POM_oper,tstamp_glider,np.arange(len(tstamp_glider)))).astype(int)
#OHCg_to_pom_oper = OHCg[oktimeg_pom_oper]
#%% All Figures
fig, ax = plt.subplots(figsize=(10, 15))
grid = plt.GridSpec(3, 1, wspace=0.0, hspace=0.3,left=0.05,right=0.95)
ax1 = plt.subplot(grid[0, 0])
ax1.plot(timeg,Tmean_dens_crit_glid,'-o',color='royalblue',label=dataset_id.split('-')[0],linewidth=4)
ax1.plot(timestamp_GOFS,Tmean_dens_crit_GOFS,'s-',color='indianred',linewidth=2,label='GOFS 3.1',markeredgecolor='k',markersize=7)
ax1.plot(timestamp_POM_oper,Tmean_dens_crit_POM_oper,'X-',color='mediumorchid',label='HWRF2019-POM (IC clim.)',markeredgecolor='k',markersize=7)
ax1.plot(timestamp_POM_exp,Tmean_dens_crit_POM_exp,'^-',color='teal',linewidth=2,label='HWRF2020-POM (IC RTOFS)',markeredgecolor='k',markersize=7)
ax1.plot(timestamp_HYCOM_exp,Tmean_dens_crit_HYCOM_exp,'H-',color='darkorange',linewidth=2,label='HWRF2020-HYCOM (IC RTOFS)',markeredgecolor='k',markersize=7)
t0 = datetime(2019,8,25)
deltat= timedelta(1)
xticks = [t0+nday*deltat for nday in np.arange(15)]
xticks = np.asarray(xticks)
ax1.set_xticks(xticks)
xfmt = mdates.DateFormatter('%d-%b')
ax1.xaxis.set_major_formatter(xfmt)
ax1.set_xlim([time_POM_oper[0],time_POM_oper[-1]])
ax1.set_ylabel('($^oC$)',fontsize = 14)
tDorian = np.tile(datetime(2019,8,29,0),len(np.arange(28,29.5,0.2)))# ng668
ax1.plot(tDorian,np.arange(28,29.5,0.2),'--k')
ax1.set_ylim([28,29.5])
ax1.set_title('Mixed Layer Temperature',fontsize=16)
plt.grid(True)
ax1.legend(loc='upper left',bbox_to_anchor=(0.27,2.1))
ax1.text(datetime(2019,8,28,1),29.6,'(a)',fontsize=16)
ax1.set_xticklabels([])
ax2 = plt.subplot(grid[1, 0])
ax2.plot(timeg,OHC_glid*10**-7,'-o',color='royalblue',label=dataset_id.split('-')[0],linewidth=4)
ax2.plot(timestamp_GOFS,OHC_GOFS*10**-7,'s-',color='indianred',linewidth=2,label='GOFS 3.1',markeredgecolor='k',markersize=7)
ax2.plot(timestamp_POM_oper,OHC_POM_oper*10**-7,'X-',color='mediumorchid',label='HWRF2019-POM (IC clim.)',markeredgecolor='k',markersize=7)
ax2.plot(timestamp_POM_exp,OHC_POM_exp*10**-7,'^-',color='teal',linewidth=2,label='HWRF2020-POM (IC RTOFS)',markeredgecolor='k',markersize=7)
ax2.plot(timestamp_HYCOM_exp,OHC_HYCOM_exp*10**-7,'H-',color='darkorange',linewidth=2,label='HWRF2020-HYCOM (IC RTOFS)',markeredgecolor='k',markersize=7)
t0 = datetime(2019,8,25)
deltat= timedelta(1)
xticks = [t0+nday*deltat for nday in np.arange(15)]
xticks = np.asarray(xticks)
ax2.set_xticks(xticks)
xfmt = mdates.DateFormatter('%d-%b')
ax2.xaxis.set_major_formatter(xfmt)
ax2.set_xlim([time_POM_oper[0],time_POM_oper[-1]])
ax2.set_ylabel('($KJ/cm^2$)',fontsize = 14)
tDorian = np.tile(datetime(2019,8,29,0),len(np.arange(55,90)))# ng665
ax2.plot(tDorian,np.arange(55,90),'--k')
ax2.set_ylim([55,90])
plt.title('Ocean Heat Content',fontsize=16)
plt.grid(True)
ax2.text(datetime(2019,8,28,1),92,'(b)',fontsize=16)
ax2.set_xticklabels([])
ax2.plot(timeg,np.tile(60,len(timeg)),'--k')
ax3 = plt.subplot(grid[2, 0])
ax3.plot(timeg,T100_glid,'-o',color='royalblue',label=dataset_id.split('-')[0],linewidth=4)
ax3.plot(timestamp_GOFS,T100_GOFS,'s-',color='indianred',linewidth=2,label='GOFS 3.1',markeredgecolor='k',markersize=7)
ax3.plot(timestamp_POM_oper,T100_POM_oper,'X-',color='mediumorchid',label='HWRF2019-POM (IC clim.)',markeredgecolor='k',markersize=7)
ax3.plot(timestamp_POM_exp,T100_POM_exp,'^-',color='teal',linewidth=2,label='HWRF2020-POM (IC RTOFS)',markeredgecolor='k',markersize=7)
ax3.plot(timestamp_HYCOM_exp,T100_HYCOM_exp,'H-',color='darkorange',linewidth=2,label='HWRF2020-HYCOM (IC RTOFS)',markeredgecolor='k',markersize=7)
t0 = datetime(2019,8,25)
deltat= timedelta(1)
xticks = [t0+nday*deltat for nday in np.arange(15)]
xticks = np.asarray(xticks)
ax3.set_xticks(xticks)
xfmt = mdates.DateFormatter('%d-%b')
ax3.xaxis.set_major_formatter(xfmt)
ax3.set_xlim([time_POM_oper[0],time_POM_oper[-1]])
ax3.set_ylabel('($^oC$)',fontsize = 14)
tDorian = np.tile(datetime(2019,8,29,0),len(np.arange(27.6,28.6,0.01)))# ng665
ax3.plot(tDorian,np.arange(27.6,28.6,0.01),'--k')
ax3.set_ylim([27.6,28.6])
ax3.set_title('T100',fontsize=16)
plt.grid(True)
ax3.text(datetime(2019,8,28,1),28.65,'(c)',fontsize=16)
file = folder_fig + 'MLT_OHC_T100_time_series2'
plt.savefig(file,bbox_inches = 'tight',pad_inches = 0.1,dpi=1000)
#%%
fig,ax = plt.subplots(figsize=(12, 2.8))
plt.plot(timeg,OHC_glid*10**-7,'-o',color='royalblue',label=dataset_id.split('-')[0],linewidth=4)
plt.plot(timestamp_GOFS,OHC_GOFS*10**-7,'s-',color='indianred',linewidth=2,label='GOFS 3.1',markeredgecolor='k',markersize=7)
plt.plot(timestamp_POM_oper,OHC_POM_oper*10**-7,'X-',color='mediumorchid',label='HWRF2019-POM (IC clim.)',markeredgecolor='k',markersize=7)
plt.plot(timestamp_POM_exp,OHC_POM_exp*10**-7,'^-',color='teal',linewidth=2,label='HWRF2020-POM (IC RTOFS)',markeredgecolor='k',markersize=7)
plt.plot(timestamp_HYCOM_exp,OHC_HYCOM_exp*10**-7,'H-',color='darkorange',linewidth=2,label='HWRF2020-HYCOM (IC RTOFS)',markeredgecolor='k',markersize=7)
t0 = datetime(2019,8,25)
deltat= timedelta(1)
xticks = [t0+nday*deltat for nday in np.arange(15)]
xticks = np.asarray(xticks)
plt.xticks(xticks)
xfmt = mdates.DateFormatter('%d-%b')
ax.xaxis.set_major_formatter(xfmt)
plt.xlim([time_POM_oper[0],time_POM_oper[-1]])
plt.ylabel('($KJ/cm^2$)',fontsize = 14)
tDorian = np.tile(datetime(2019,8,29,0),len(np.arange(55,90)))# ng665
plt.plot(tDorian,np.arange(55,90),'--k')
plt.ylim([55,90])
#tDorian = np.tile(datetime(2019,8,28,18),len(np.arange(45,80))) #ng668
#plt.plot(tDorian,np.arange(45,80),'--k')
#plt.ylim([45,80])
plt.title('Ocean Heat Content',fontsize=16)
plt.grid(True)
plt.legend(loc='upper left',bbox_to_anchor=(1,0.9))
file = folder_fig + dataset_id + '_OHC'
plt.savefig(file,bbox_inches = 'tight',pad_inches = 0.1)
#%% Temp ML
oktimeg_gofs = np.round(np.interp(tstamp_model,tstamp_glider,np.arange(len(tstamp_glider)))).astype(int)
#OHCg_to31 = OHCg[oktimeg_gofs]
oktimeg_pom_oper = np.round(np.interp(timestamp_POM_oper,tstamp_glider,np.arange(len(tstamp_glider)))).astype(int)
#OHCg_to_pom_oper = OHCg[oktimeg_pom_oper]
fig,ax = plt.subplots(figsize=(12, 2.8))
plt.plot(timeg,Tmean_dens_crit_glid,'-o',color='royalblue',label=dataset_id.split('-')[0],linewidth=4)
plt.plot(time_GOFS,Tmean_dens_crit_GOFS,'s-',color='indianred',linewidth=2,label='GOFS 3.1',markeredgecolor='k',markersize=7)
plt.plot(timestamp_POM_oper,Tmean_dens_crit_POM_oper,'X-',color='mediumorchid',label='HWRF2019-POM (IC clim.)',markeredgecolor='k',markersize=7)
plt.plot(timestamp_POM_exp,Tmean_dens_crit_POM_exp,'^-',color='teal',linewidth=2,label='HWRF2020-POM (IC RTOFS)',markeredgecolor='k',markersize=7)
plt.plot(timestamp_HYCOM_exp,Tmean_dens_crit_HYCOM_exp,'H-',color='darkorange',linewidth=2,label='HWRF2020-HYCOM (IC RTOFS)',markeredgecolor='k',markersize=7)
t0 = datetime(2019,8,25)
deltat= timedelta(1)
xticks = [t0+nday*deltat for nday in np.arange(15)]
xticks = np.asarray(xticks)
plt.xticks(xticks)
xfmt = mdates.DateFormatter('%d-%b')
ax.xaxis.set_major_formatter(xfmt)
plt.xlim([time_POM_oper[0],time_POM_oper[-1]])
plt.ylabel('($^oC$)',fontsize = 14)
#tDorian = np.tile(datetime(2019,8,28,18),len(np.arange(28,29.5,0.2)))# ng668
#plt.plot(tDorian,np.arange(28,29.5,0.2),'--k')
tDorian = np.tile(datetime(2019,8,29,0),len(np.arange(28,29.5,0.2)))# ng668
plt.plot(tDorian,np.arange(28,29.5,0.2),'--k')
plt.ylim([28,29.5])
plt.title('Mixed Layer Temperature',fontsize=16)
plt.grid(True)
plt.legend(loc='upper left',bbox_to_anchor=(1,0.9))
file = folder_fig + dataset_id + '_temp_ml'
plt.savefig(file,bbox_inches = 'tight',pad_inches = 0.1)
#%% T100
oktimeg_gofs = np.round(np.interp(tstamp_model,tstamp_glider,np.arange(len(tstamp_glider)))).astype(int)