forked from NCATS-Tangerine/NCATS-ReasonerStdAPI-diff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_compare.py
143 lines (130 loc) · 5.58 KB
/
graph_compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import json
import networkx as nx
import sys
import traceback
class GraphComparator:
""" Compare knowledge graphs. """
def get_network (self, kg):
""" Answer to networkx. """
nodes = kg['nodes']
edges = kg['edges']
g = nx.MultiDiGraph()
for n in nodes:
#print (n['id'])
g.add_node(n['id'], attr_dict=n)
for e in edges:
#print (e['id'])
g.add_edge (e['source_id'], e['target_id'], attr_dict=e)
return g
def diff_graphs0 (self, g1, g2):
""" Diff nx graphs. """
g1_copy = g1.copy ()
g1_copy.remove_nodes_from(n for n in g1 if not n in g2)
g2_copy = g2.copy ()
g2_copy.remove_nodes_from(n for n in g2 if not n in g1)
g1_minus_g2 = nx.difference (g1_copy, g2_copy)
#self.print_graph (g1_minus_g2)
return g1_minus_g2
def diff_graphs (self, g1, g2):
""" Diff nx graphs. """
g1_copy_2 = g1.copy ()
edges_to_delete = []
#print (f"0. edges in g1_copy_2: {len(list(g1_copy_2.edges ()))}")
for e in g1_copy_2.edges(data=True, keys=True):
source = e[0]
target = e[1]
""" e is a node in g1 matching the missing node's source and target. """
for g2e in g2.edges (data=True, keys=True):
g2source = g2e[0]
g2target = g2e[1]
found = False
if source == g2source and target == g2target:
if self.edge_equals (e[3]['attr_dict'], g2e[3]['attr_dict']):
""" g2 contains this edge. """
edges_to_delete.append (e)
found = True
else:
'''
print (f"========================================")
print (f"e in g1: {json.dumps(e[3]['attr_dict'], indent=2)}")
print (f"g2e in g2: {json.dumps(g2e[3]['attr_dict'], indent=2)}")
print (f"========================================")
'''
pass
for de in edges_to_delete:
try:
g1_copy_2.remove_edge (de[0], de[1], key=de[2])
except:
print ("exception deleting edge")
pass
#print (f"1. edges in g1_copy_2: {len(list(g1_copy_2.edges ()))}")
return g1_copy_2
def edge_equals0 (self, e1, e2):
fields = [ "source_id", "target_id", "edge_source", "relation", "type" ]
return all([ field in e1 and field in e2 and e1[field] == e2[field] for field in fields ])
def edge_equals (self, e1, e2):
equal = True
#fields = [ "source_id", "target_id", "type", "edge_source", "source_database" ]
fields = [ "source_id", "target_id", "type", "source_database" ]
for f in fields:
if not (f in e1 and f in e2 and e1[f] == e2[f]):
#print (f"7777777>>>>>>>>> {f} bad")
equal = False
break
return equal
def intersect (self, g1, g2):
g1_copy = g1.copy ()
g1_copy.remove_nodes_from(n for n in g1 if not n in g2)
intersection = nx.MultiDiGraph ()
try:
intersection = nx.intersection (g1_copy, g2)
except:
traceback.print_exc ()
g1_copy_2 = g1.copy ()
g1_copy_2.remove_nodes_from(n for n in g1 if not n in intersection)
return g1_copy_2
def print_graph (self, g):
""" Print graph. """
for n in g.nodes (data=True):
pass #print (f"--n--> {n}")
for e in g.edges (data=True):
pass #print (f"---e-> {e}")
def compare (self, answer1, answer2):
""" Compare graphs from a request. """
g1 = self.get_network (answer1['knowledge_graph'])
g2 = self.get_network (answer2['knowledge_graph'])
g1_g2 = self.diff_graphs (g1, g2)
g2_g1 = self.diff_graphs (g2, g1)
intersection = self.intersect (g1, g2)
# for each of the difference graphs, only include those nodes that show up as a source or a target for one
# of the edges
g1_g2_connected_nodes = set()
for u,v,d in g1_g2.edges(data=True):
g1_g2_connected_nodes.add(u) # source node
g1_g2_connected_nodes.add(v) # target node
g1_g2_connected_nodes_data = []
# now get the data associated to these nodes
for node in g1_g2_connected_nodes:
data = g1_g2.nodes(data=True)[node]
g1_g2_connected_nodes_data.append(data)
g2_g1_connected_nodes = set()
for u, v, d in g2_g1.edges(data=True):
g2_g1_connected_nodes.add(u)
g2_g1_connected_nodes.add(v)
g2_g1_connected_nodes_data = []
for node in g2_g1_connected_nodes:
g2_g1_connected_nodes_data.append(g2_g1.node[node]['attr_dict'])
return {
"g1-g2" : {
"edges" : [ e[2]['attr_dict'] for e in g1_g2.edges (data=True) ],
"nodes" : g1_g2_connected_nodes_data
},
"g2-g1" : {
"edges" : [ e[2]['attr_dict'] for e in g2_g1.edges (data=True) ],
"nodes": g2_g1_connected_nodes_data
},
"intersection" : {
"nodes" : [ n[1]['attr_dict'] for n in intersection.nodes (data=True) if 'attr_dict' in n[1] ],
"edges" : [ e[2]['attr_dict'] for e in intersection.edges (data=True) ]
}
}