forked from esiwgnahz/DGSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_DGSA_analytic.m
79 lines (61 loc) · 3.13 KB
/
main_DGSA_analytic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
% main_DGSA_analytic.m
%
%% Distance-Based generalized Sensitivity Analysis: Analytic example
%
% This script is written to demonstrate how to apply DGSA to obtain main/conditional effects.
% Also, it shows how to decrease uncertainty of model parameters with minimal impact on responses.
%
% References:
%
% Fenwick et al. (2014), Quantifying Asymmetric Parameter Interactions in Sensitivity Analysis: Application to Reservoir Modeling. Mathematical Geosciences
% Park et al. (2016), DGSA: a matlab toolbox for distance-based generalized sensitivity analysis for geoscientific computer experiments
%This script was originally written by Celine Scheidt in August 2012
% Lastly updated by Jihoon Park (jhpark3@stanford.edu) in May 2016
%
% - Scripts are written to involve change of functions
% - Net conditional effects are computed in the script.
clear all; close all; fclose('all');
%% 1. Add paths
addpath(genpath(pwd))
%% 2. Monte Carlo sampling & Compute responses
% Define three parameters
NbSimu=500; NbParams=3; rng(12756);
DGSA.ParametersValues=lhsdesign(NbSimu,NbParams,'criterion','correlation','iterations',50);
% Responses Y1 and Y2, r=[Y1, Y2]=[X1,X2*(1-X3)]
Y1=DGSA.ParametersValues(:,1); Y2=abs(DGSA.ParametersValues(:,2).*(DGSA.ParametersValues(:,3)-1));
PriorResponses=[Y1,Y2];
% Construct distance vector
DGSA.D=pdist(PriorResponses);
%% 3. Specify inputs for DGSA
DGSA.ParametersNames={'X1','X2','X3'}; % Name of each parameter
DGSA.Nbcluster=3; % # of clusters
DGSA.MainEffects.Display.ParetoPlotbyCluster=1; % If true, display main effects by clusters
DGSA.MainEffects.Display.StandardizedSensitivity='Pareto';
% Perform clustering.
DGSA.Clustering=kmedoids(DGSA.D,DGSA.Nbcluster,10);
% Compute & Display main effects
DGSA=ComputeMainEffects(DGSA);
% Display CDFs. In this example, cdf of X1 is shown.
% If you want every CDFs, simply omit the last variable in the following function.
cdf_MainFactor(DGSA.ParametersValues, DGSA.Clustering, DGSA.ParametersNames,{'X1'});
%% 4. Compute & Display conditional effects
%%% Enter inputs
DGSA.ConditionalEffects.NbBins=3*ones(1,NbParams); % 3 bins for each parameters
DGSA.ConditionalEffects.Display.SensitivityByClusterAndBins=1; % If true, it shows Pareto plots of conditional effects by bins and clusters
DGSA.ConditionalEffects.Display.StandardizedSensitivity='Pareto';
% Compute & display conditional effects
DGSA=ComputeConditionalEffects(DGSA);
DisplayConditionalEffects(DGSA,DGSA.ConditionalEffects.Display.StandardizedSensitivity);
% Display CDF
cdf_ConditionalEffects('X2','X3',DGSA,1) % The example displays CDF of X2|X3, Cluster 1
%% 5. See the distribution of Y1 and Y2
% Compute net conditional effects of X3
[NetConditionalEffects,Bin_MaxNetConditional]=ComputeNetConditionalEffects...
('X3', DGSA, {'X3<1/3','1/3<X3<2/3','X3>2/3'}); % See net conditional effects of X3.
% Decrease uncertainty of X3 to X3<1/3
idx=DGSA.ParametersValues(:,3)<1/3;
figure;
plot(Y1,Y2,'.','Markersize',20);hold on;
plot(Y1(idx),Y2(idx),'r*','Markersize',20);hold off;
axis('square'); xlabel('Y_1','Fontsize',12);ylabel('Y_2','Fontsize',12);
title('Uncertainty using net conditional effects','Fontsize',14);