-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchain_server.py
130 lines (88 loc) · 3.29 KB
/
chain_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import print_function
from markovify.text import NewlineText
import tornado.ioloop
import tornado.web
from tornado.options import parse_command_line
import os.path
import json
import random
import sys
import resource
import humanfriendly
class MarkovChain(object):
def __init__(self):
self.chains = {}
def load_chains(self):
"""Load Markov chains from files"""
from generator import settings
chains = settings.NAMES + ["general", "title"]
for name in chains:
path = os.path.join(
"chains",
"%s.json" % name)
if not os.path.exists(path):
continue
print("Loading chain %s... " % name, end="")
f = open(path, 'r')
data = f.read()
f.close()
data = json.loads(data)
text = NewlineText.from_chain(data)
self.chains[name] = text
print("Loaded!")
markov_chain = MarkovChain()
class MainHandler(tornado.web.RequestHandler):
def post(self):
response = {}
generate_pre_dialog = self.get_argument(
"generate_pre_dialog",
default=False)
generate_post_dialog = self.get_argument(
"generate_post_dialog",
default=False)
if self.get_argument("conversation_length", default=None):
response["dialoglog"] = []
conversation_length = int(self.get_argument("conversation_length"))
characters = json.loads(self.get_argument("characters"))
for i in range(0, conversation_length):
# Pick a random character
character = random.choice(characters)
entry = {"char": character,
"logs": []}
for j in range(0, random.randint(1, 3)):
entry["logs"].append(self.generate_sentence(character))
response["dialoglog"].append(entry)
# Generate title
response["title"] = self.generate_sentence("title")
if generate_pre_dialog:
# Generate pre-dialog text
response["pre_dialog_text"] = self.generate_sentence("general")
if generate_post_dialog:
# Generate post-dialog text
response["post_dialog_text"] = self.generate_sentence("general")
response = json.dumps(response)
self.write(response)
def generate_sentence(self, name):
"""
Generate a sentence using the provided chain
"""
for i in range(0, 10):
text = markov_chain.chains[name].make_sentence()
if text is not None:
return text
return None
def main():
parse_command_line()
print("Loading markov chains...")
markov_chain.load_chains()
# Print memory usage for the server when all chains are loaded
memory_usage = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss * 1000.0
memory_usage = humanfriendly.format_size(memory_usage)
print("Markov chain server loaded, memory usage %s" % memory_usage)
application = tornado.web.Application([
(r"/", MainHandler),
], debug=False)
application.listen(5666, address='127.0.0.1')
tornado.ioloop.IOLoop.instance().start()
if __name__ == "__main__":
main()