Skip to content

Latest commit

 

History

History
112 lines (75 loc) · 5.65 KB

README.md

File metadata and controls

112 lines (75 loc) · 5.65 KB

USTC-NELSLIP-SemEval2022Task11-GAIN

Winner system (USTC-NELSLIP) of SemEval 2022 MultiCoNER shared task over 3 out of 13 tracks (Chinese, Bangla, Code-Mixed). Rankings: https://multiconer.github.io/results.

This repository containing the training and prediction code of the system developed by the USTC-NELSLIP team for SemEval-2022 Task 11 MultiCoNER.

We provide code of two gazetteer-based methods used in our final system, GAIN and weighted summation integration with gazetteer method.

GAIN: Gazetteer-Adapted Integration Network with crf classifier mentioned in Section 3.3 in paper.

weighted_fusion_crf: Weighted summation integration with gazetteer method using crf classifier mentioned in Section 3.2 in paper.

Overall Structure

Image text

Citation

If you use this code, please cite the paper below:

USTC-NELSLIP at SemEval-2022 Task 11: Gazetteer-Adapted Integration Network for Multilingual Complex Named Entity Recognition

@inproceedings{chen-etal-2022-ustc, title = "{USTC}-{NELSLIP} at {S}em{E}val-2022 Task 11: Gazetteer-Adapted Integration Network for Multilingual Complex Named Entity Recognition", author = "Chen, Beiduo and Ma, Jun-Yu and Qi, Jiajun and Guo, Wu and Ling, Zhen-Hua and Liu, Quan", booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.semeval-1.223", pages = "1613--1622", abstract = "This paper describes the system developed by the USTC-NELSLIP team for SemEval-2022 Task 11 Multilingual Complex Named Entity Recognition (MultiCoNER). We propose a gazetteer-adapted integration network (GAIN) to improve the performance of language models for recognizing complex named entities. The method first adapts the representations of gazetteer networks to those of language models by minimizing the KL divergence between them. After adaptation, these two networks are then integrated for backend supervised named entity recognition (NER) training. The proposed method is applied to several state-of-the-art Transformer-based NER models with a gazetteer built from Wikidata, and shows great generalization ability across them. The final predictions are derived from an ensemble of these trained models. Experimental results and detailed analysis verify the effectiveness of the proposed method. The official results show that our system ranked 1st on three tracks (Chinese, Code-mixed and Bangla) and 2nd on the other ten tracks in this task.", }

Getting Started

Setting up the code environment

$ pip install -r requirements.txt

Arguments

Most of our arguments are the same as those in MULTI-CONER NER Baseline System.

Notice that we add argument gazetteer to introduce the path of gazetteer.

    p.add_argument('--train', type=str, help='Path to the train data.', default=None)
    p.add_argument('--test', type=str, help='Path to the test data.', default=None)
    p.add_argument('--dev', type=str, help='Path to the dev data.', default=None)
    p.add_argument('--gazetteer', type=str, help='Path to the gazetteer data.', default=None)

    p.add_argument('--out_dir', type=str, help='Output directory.', default='.')
    p.add_argument('--iob_tagging', type=str, help='IOB tagging scheme', default='wnut')

    p.add_argument('--max_instances', type=int, help='Maximum number of instances', default=-1)
    p.add_argument('--max_length', type=int, help='Maximum number of tokens per instance.', default=128)

    p.add_argument('--encoder_model', type=str, help='Pretrained encoder model to use', default='xlm-roberta-large')
    p.add_argument('--keep_training_model', type=str, help='keep Pretrained encoder model to use', default='')
    p.add_argument('--model', type=str, help='Model path.', default=None)
    p.add_argument('--model_name', type=str, help='Model name.', default=None)
    p.add_argument('--stage', type=str, help='Training stage', default='fit')
    p.add_argument('--prefix', type=str, help='Prefix for storing evaluation files.', default='test')

    p.add_argument('--batch_size', type=int, help='Batch size.', default=128)
    p.add_argument('--gpus', type=int, help='Number of GPUs.', default=1)
    p.add_argument('--epochs', type=int, help='Number of epochs for training.', default=5)
    p.add_argument('--lr', type=float, help='Learning rate', default=1e-5)
    p.add_argument('--dropout', type=float, help='Dropout rate', default=0.1)

Running

1. Move into the folder of method you chose

cd AGAN or cd weighted_fusion_crf

Before you running any shell file, you need to modify the arguments to your own paths or hyper-parameters at first.

2. Training

Train a xlm-roberta-large based model. The pretrained xlmr model is from HuggingFace

bash run_train.sh

3. Fine-Tuning

Fine-tuning from a pretrained NER model.

bash run_finetune.sh

4. Predicting

Predicting the tags from a pretrained model.

bash run_predict.sh

Reference

MULTI-CONER NER Baseline System

License

The code under this repository is licensed under the Apache 2.0 License.