-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcontext.c
1347 lines (1175 loc) · 37.4 KB
/
context.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2011 Leiden University. All rights reserved.
* Copyright 2014 Ecole Normale Superieure. All rights reserved.
* Copyright 2016 Sven Verdoolaege. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as
* representing official policies, either expressed or implied, of
* Leiden University.
*/
#include <isl/aff.h>
#include "aff.h"
#include "array.h"
#include "context.h"
#include "expr.h"
#include "expr_arg.h"
#include "nest.h"
#include "patch.h"
#include "tree.h"
#include "pet_expr_to_isl_pw_aff.h"
/* A pet_context represents the context in which a pet_expr
* in converted to an affine expression.
*
* "domain" prescribes the domain of the affine expressions.
*
* "assignments" maps variable names to their currently known values.
* Internally, the domains of the values may be equal to some prefix
* of the space of "domain", but the domains are updated to be
* equal to the space of "domain" before passing them to the user.
*
* If "allow_nested" is set, then the affine expression created
* in this context may involve new parameters that encode a pet_expr.
*
* "extracted_affine" caches the results of pet_expr_extract_affine.
* It may be NULL if no results have been cached so far and
* it is cleared (in pet_context_cow) whenever the context is changed.
*/
struct pet_context {
int ref;
isl_set *domain;
isl_id_to_pw_aff *assignments;
int allow_nested;
pet_expr_to_isl_pw_aff *extracted_affine;
};
/* Create a pet_context with the given domain, assignments,
* and value for allow_nested.
*/
static __isl_give pet_context *context_alloc(__isl_take isl_set *domain,
__isl_take isl_id_to_pw_aff *assignments, int allow_nested)
{
pet_context *pc;
if (!domain || !assignments)
goto error;
pc = isl_calloc_type(isl_set_get_ctx(domain), struct pet_context);
if (!pc)
goto error;
pc->ref = 1;
pc->domain = domain;
pc->assignments = assignments;
pc->allow_nested = allow_nested;
return pc;
error:
isl_set_free(domain);
isl_id_to_pw_aff_free(assignments);
return NULL;
}
/* Create a pet_context with the given domain.
*
* Initially, there are no assigned values and parameters that
* encode a pet_expr are not allowed.
*/
__isl_give pet_context *pet_context_alloc(__isl_take isl_set *domain)
{
isl_id_to_pw_aff *assignments;
if (!domain)
return NULL;
assignments = isl_id_to_pw_aff_alloc(isl_set_get_ctx(domain), 0);
return context_alloc(domain, assignments, 0);
}
/* Return an independent duplicate of "pc".
*/
static __isl_give pet_context *pet_context_dup(__isl_keep pet_context *pc)
{
pet_context *dup;
if (!pc)
return NULL;
dup = context_alloc(isl_set_copy(pc->domain),
isl_id_to_pw_aff_copy(pc->assignments),
pc->allow_nested);
return dup;
}
/* Return a pet_context that is equal to "pc" and that has only one reference.
*
* If "pc" itself only has one reference, then clear the cache of
* pet_expr_extract_affine results since the returned pet_context
* will be modified and the cached results may no longer be valid
* after these modifications.
*/
static __isl_give pet_context *pet_context_cow(__isl_take pet_context *pc)
{
if (!pc)
return NULL;
if (pc->ref == 1) {
pet_expr_to_isl_pw_aff_free(pc->extracted_affine);
pc->extracted_affine = NULL;
return pc;
}
pc->ref--;
return pet_context_dup(pc);
}
/* Return an extra reference to "pc".
*/
__isl_give pet_context *pet_context_copy(__isl_keep pet_context *pc)
{
if (!pc)
return NULL;
pc->ref++;
return pc;
}
/* Free a reference to "pc" and return NULL.
*/
__isl_null pet_context *pet_context_free(__isl_take pet_context *pc)
{
if (!pc)
return NULL;
if (--pc->ref > 0)
return NULL;
isl_set_free(pc->domain);
isl_id_to_pw_aff_free(pc->assignments);
pet_expr_to_isl_pw_aff_free(pc->extracted_affine);
free(pc);
return NULL;
}
/* If an isl_pw_aff corresponding to "expr" has been cached in "pc",
* then return a copy of that isl_pw_aff.
* Otherwise, return (isl_bool_false, NULL).
*/
__isl_give isl_maybe_isl_pw_aff pet_context_get_extracted_affine(
__isl_keep pet_context *pc, __isl_keep pet_expr *expr)
{
isl_maybe_isl_pw_aff m = { isl_bool_false, NULL };
if (!pc)
goto error;
if (!pc->extracted_affine)
return m;
return pet_expr_to_isl_pw_aff_try_get(pc->extracted_affine, expr);
error:
m.valid = isl_bool_error;
return m;
}
/* Keep track of the fact that "expr" maps to "pa" in "pc".
*/
isl_stat pet_context_set_extracted_affine(__isl_keep pet_context *pc,
__isl_keep pet_expr *expr, __isl_keep isl_pw_aff *pa)
{
if (!pc || !expr)
return isl_stat_error;
if (!pc->extracted_affine) {
isl_ctx *ctx;
ctx = pet_context_get_ctx(pc);
pc->extracted_affine = pet_expr_to_isl_pw_aff_alloc(ctx, 1);
}
pc->extracted_affine = pet_expr_to_isl_pw_aff_set(pc->extracted_affine,
pet_expr_copy(expr), isl_pw_aff_copy(pa));
if (!pc->extracted_affine)
return isl_stat_error;
return isl_stat_ok;
}
/* Return the isl_ctx in which "pc" was created.
*/
isl_ctx *pet_context_get_ctx(__isl_keep pet_context *pc)
{
return pc ? isl_set_get_ctx(pc->domain) : NULL;
}
/* Return the domain of "pc".
*/
__isl_give isl_set *pet_context_get_domain(__isl_keep pet_context *pc)
{
if (!pc)
return NULL;
return isl_set_copy(pc->domain);
}
/* Return the domain of "pc" in a form that is suitable
* for use as a gist context.
* In particular, remove all references to nested expression parameters
* so that they do not get introduced in the gisted expression.
*/
__isl_give isl_set *pet_context_get_gist_domain(__isl_keep pet_context *pc)
{
isl_set *domain;
domain = pet_context_get_domain(pc);
domain = pet_nested_remove_from_set(domain);
return domain;
}
/* Return the domain space of "pc".
*
* The domain of "pc" may have constraints involving parameters
* that encode a pet_expr. These parameters are not relevant
* outside this domain. Furthermore, they need to be resolved
* from the final result, so we do not want to propagate them needlessly.
*/
__isl_give isl_space *pet_context_get_space(__isl_keep pet_context *pc)
{
isl_space *space;
if (!pc)
return NULL;
space = isl_set_get_space(pc->domain);
space = pet_nested_remove_from_space(space);
return space;
}
/* Return the dimension of the domain space of "pc".
*/
unsigned pet_context_dim(__isl_keep pet_context *pc)
{
if (!pc)
return 0;
return isl_set_dim(pc->domain, isl_dim_set);
}
/* Return the assignments of "pc".
*/
__isl_give isl_id_to_pw_aff *pet_context_get_assignments(
__isl_keep pet_context *pc)
{
if (!pc)
return NULL;
return isl_id_to_pw_aff_copy(pc->assignments);
}
/* Is "id" assigned any value in "pc"?
*/
int pet_context_is_assigned(__isl_keep pet_context *pc, __isl_keep isl_id *id)
{
if (!pc || !id)
return -1;
return isl_id_to_pw_aff_has(pc->assignments, id);
}
/* Return the value assigned to "id" in "pc".
*
* Some dimensions may have been added to pc->domain after the value
* associated to "id" was added. We therefore need to adjust the domain
* of the stored value to match pc->domain by adding the missing
* dimensions.
*/
__isl_give isl_pw_aff *pet_context_get_value(__isl_keep pet_context *pc,
__isl_take isl_id *id)
{
int dim;
isl_pw_aff *pa;
isl_multi_aff *ma;
if (!pc || !id)
goto error;
pa = isl_id_to_pw_aff_get(pc->assignments, id);
dim = isl_pw_aff_dim(pa, isl_dim_in);
if (dim == isl_set_dim(pc->domain, isl_dim_set))
return pa;
ma = pet_prefix_projection(pet_context_get_space(pc), dim);
pa = isl_pw_aff_pullback_multi_aff(pa, ma);
return pa;
error:
isl_id_free(id);
return NULL;
}
/* Assign the value "value" to "id" in "pc", replacing the previously
* assigned value, if any.
*/
__isl_give pet_context *pet_context_set_value(__isl_take pet_context *pc,
__isl_take isl_id *id, isl_pw_aff *value)
{
pc = pet_context_cow(pc);
if (!pc)
goto error;
pc->assignments = isl_id_to_pw_aff_set(pc->assignments, id, value);
if (!pc->assignments)
return pet_context_free(pc);
return pc;
error:
isl_id_free(id);
isl_pw_aff_free(value);
return NULL;
}
/* Remove any assignment to "id" in "pc".
*/
__isl_give pet_context *pet_context_clear_value(__isl_keep pet_context *pc,
__isl_take isl_id *id)
{
pc = pet_context_cow(pc);
if (!pc)
goto error;
pc->assignments = isl_id_to_pw_aff_drop(pc->assignments, id);
if (!pc->assignments)
return pet_context_free(pc);
return pc;
error:
isl_id_free(id);
return NULL;
}
/* Are affine expressions created in this context allowed to involve
* parameters that encode a pet_expr?
*/
int pet_context_allow_nesting(__isl_keep pet_context *pc)
{
if (!pc)
return -1;
return pc->allow_nested;
}
/* Allow affine expressions created in this context to involve
* parameters that encode a pet_expr based on the value of "allow_nested".
*/
__isl_give pet_context *pet_context_set_allow_nested(__isl_take pet_context *pc,
int allow_nested)
{
if (!pc)
return NULL;
if (pc->allow_nested == allow_nested)
return pc;
pc = pet_context_cow(pc);
if (!pc)
return NULL;
pc->allow_nested = allow_nested;
return pc;
}
/* If the access expression "expr" writes to a (non-virtual) scalar,
* then remove any assignment to the scalar in "pc".
*/
static int clear_write(__isl_keep pet_expr *expr, void *user)
{
isl_id *id;
pet_context **pc = (pet_context **) user;
if (!pet_expr_access_is_write(expr))
return 0;
if (!pet_expr_is_scalar_access(expr))
return 0;
id = pet_expr_access_get_id(expr);
if (isl_id_get_user(id))
*pc = pet_context_clear_value(*pc, id);
else
isl_id_free(id);
return 0;
}
/* Look for any writes to scalar variables in "expr" and
* remove any assignment to them in "pc".
*/
__isl_give pet_context *pet_context_clear_writes_in_expr(
__isl_take pet_context *pc, __isl_keep pet_expr *expr)
{
if (pet_expr_foreach_access_expr(expr, &clear_write, &pc) < 0)
pc = pet_context_free(pc);
return pc;
}
/* Look for any writes to scalar variables in "tree" and
* remove any assignment to them in "pc".
*/
__isl_give pet_context *pet_context_clear_writes_in_tree(
__isl_take pet_context *pc, __isl_keep pet_tree *tree)
{
if (pet_tree_foreach_access_expr(tree, &clear_write, &pc) < 0)
pc = pet_context_free(pc);
return pc;
}
/* Internal data structure for pet_context_add_parameters.
*
* "pc" is the context that is being updated.
* "get_array_size" is a callback function that can be used to determine
* the size of the array that is accessed by a given access expression.
* "user" is the user data for this callback.
*/
struct pet_context_add_parameter_data {
pet_context *pc;
__isl_give pet_expr *(*get_array_size)(__isl_keep pet_expr *access,
void *user);
void *user;
};
/* Given an access expression "expr", add a parameter assignment to data->pc
* to the variable being accessed, provided it is a read from an integer
* scalar variable.
* If an array is being accesed, then recursively call the function
* on each of the access expressions in the size expression of the array.
*/
static int add_parameter(__isl_keep pet_expr *expr, void *user)
{
struct pet_context_add_parameter_data *data = user;
int pos;
isl_id *id;
isl_space *space;
isl_local_space *ls;
isl_aff *aff;
isl_pw_aff *pa;
if (!pet_expr_is_scalar_access(expr)) {
pet_expr *size = data->get_array_size(expr, data->user);
if (pet_expr_foreach_access_expr(size,
&add_parameter, data) < 0)
data->pc = pet_context_free(data->pc);
pet_expr_free(size);
return 0;
}
if (!pet_expr_access_is_read(expr))
return 0;
if (pet_expr_get_type_size(expr) == 0)
return 0;
id = pet_expr_access_get_id(expr);
if (pet_context_is_assigned(data->pc, id)) {
isl_id_free(id);
return 0;
}
space = pet_context_get_space(data->pc);
pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
if (pos < 0) {
pos = isl_space_dim(space, isl_dim_param);
space = isl_space_add_dims(space, isl_dim_param, 1);
space = isl_space_set_dim_id(space, isl_dim_param, pos,
isl_id_copy(id));
}
ls = isl_local_space_from_space(space);
aff = isl_aff_var_on_domain(ls, isl_dim_param, pos);
pa = isl_pw_aff_from_aff(aff);
data->pc = pet_context_set_value(data->pc, id, pa);
return 0;
}
/* Add an assignment to "pc" for each parameter in "tree".
* "get_array_size" is a callback function that can be used to determine
* the size of the array that is accessed by a given access expression.
*
* We initially treat as parameters any integer variable that is read
* anywhere in "tree" or in any of the size expressions for any of
* the arrays accessed in "tree".
* Then we remove from those variables that are written anywhere
* inside "tree".
*/
__isl_give pet_context *pet_context_add_parameters(__isl_take pet_context *pc,
__isl_keep pet_tree *tree,
__isl_give pet_expr *(*get_array_size)(__isl_keep pet_expr *access,
void *user), void *user)
{
struct pet_context_add_parameter_data data;
data.pc = pc;
data.get_array_size = get_array_size;
data.user = user;
if (pet_tree_foreach_access_expr(tree, &add_parameter, &data) < 0)
data.pc = pet_context_free(data.pc);
data.pc = pet_context_clear_writes_in_tree(data.pc, tree);
return data.pc;
}
/* Given an access expression, check if it reads a scalar variable
* that has a known value in "pc".
* If so, then replace the access by an access to that value.
*/
static __isl_give pet_expr *access_plug_in_affine_read(
__isl_take pet_expr *expr, void *user)
{
pet_context *pc = user;
isl_pw_aff *pa;
if (pet_expr_access_is_write(expr))
return expr;
if (!pet_expr_is_scalar_access(expr))
return expr;
pa = pet_expr_extract_affine(expr, pc);
if (!pa)
return pet_expr_free(expr);
if (isl_pw_aff_involves_nan(pa)) {
isl_pw_aff_free(pa);
return expr;
}
pet_expr_free(expr);
expr = pet_expr_from_index(isl_multi_pw_aff_from_pw_aff(pa));
return expr;
}
/* Replace every read access in "expr" to a scalar variable
* that has a known value in "pc" by that known value.
*/
static __isl_give pet_expr *plug_in_affine_read(__isl_take pet_expr *expr,
__isl_keep pet_context *pc)
{
return pet_expr_map_access(expr, &access_plug_in_affine_read, pc);
}
/* Add an extra affine expression to "mpa" that is equal to
* an extra dimension in the range of the wrapped relation in the domain
* of "mpa". "n_arg" is the original number of dimensions in this range.
*
* That is, if "n_arg" is 0, then the input has the form
*
* D(i) -> [f(i)]
*
* and the output has the form
*
* [D(i) -> [y]] -> [f(i), y]
*
* If "n_arg" is different from 0, then the input has the form
*
* [D(i) -> [x]] -> [f(i,x)]
*
* with x consisting of "n_arg" dimensions, and the output has the form
*
* [D(i) -> [x,y]] -> [f(i,x), y]
*
*
* We first adjust the domain of "mpa" and then add the extra
* affine expression (y).
*/
static __isl_give isl_multi_pw_aff *add_arg(__isl_take isl_multi_pw_aff *mpa,
int n_arg)
{
int dim;
isl_space *space;
isl_multi_aff *ma;
isl_multi_pw_aff *mpa2;
if (n_arg == 0) {
space = isl_space_domain(isl_multi_pw_aff_get_space(mpa));
dim = isl_space_dim(space, isl_dim_set);
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_set, 1);
ma = isl_multi_aff_domain_map(space);
} else {
isl_multi_aff *ma2;
isl_space *dom, *ran;
space = isl_space_domain(isl_multi_pw_aff_get_space(mpa));
space = isl_space_unwrap(space);
dom = isl_space_domain(isl_space_copy(space));
dim = isl_space_dim(dom, isl_dim_set);
ran = isl_space_range(space);
ran = isl_space_add_dims(ran, isl_dim_set, 1);
space = isl_space_map_from_set(dom);
ma = isl_multi_aff_identity(space);
ma2 = isl_multi_aff_project_out_map(ran, isl_dim_set, n_arg, 1);
ma = isl_multi_aff_product(ma, ma2);
}
mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
space = isl_space_domain(isl_multi_pw_aff_get_space(mpa));
ma = isl_multi_aff_project_out_map(space, isl_dim_set, 0, dim + n_arg);
mpa2 = isl_multi_pw_aff_from_multi_aff(ma);
mpa = isl_multi_pw_aff_flat_range_product(mpa, mpa2);
return mpa;
}
/* Add the integer value from "arg" to "mpa".
*/
static __isl_give isl_multi_pw_aff *add_int(__isl_take isl_multi_pw_aff *mpa,
__isl_take pet_expr *arg)
{
isl_space *space;
isl_val *v;
isl_aff *aff;
isl_multi_pw_aff *mpa_arg;
v = pet_expr_int_get_val(arg);
pet_expr_free(arg);
space = isl_space_domain(isl_multi_pw_aff_get_space(mpa));
aff = isl_aff_val_on_domain(isl_local_space_from_space(space), v);
mpa_arg = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
mpa = isl_multi_pw_aff_flat_range_product(mpa, mpa_arg);
return mpa;
}
/* Add the affine expression from "arg" to "mpa".
* "n_arg" is the number of dimensions in the range of the wrapped
* relation in the domain of "mpa".
*/
static __isl_give isl_multi_pw_aff *add_aff(__isl_take isl_multi_pw_aff *mpa,
int n_arg, __isl_take pet_expr *arg)
{
isl_multi_pw_aff *mpa_arg;
mpa_arg = pet_expr_access_get_index(arg);
pet_expr_free(arg);
if (n_arg > 0) {
isl_space *space;
isl_multi_aff *ma;
space = isl_space_domain(isl_multi_pw_aff_get_space(mpa));
space = isl_space_unwrap(space);
ma = isl_multi_aff_domain_map(space);
mpa_arg = isl_multi_pw_aff_pullback_multi_aff(mpa_arg, ma);
}
mpa = isl_multi_pw_aff_flat_range_product(mpa, mpa_arg);
return mpa;
}
/* Combine the index expression of "expr" with the subaccess relation "access".
* If "add" is set, then it is not the index expression of "expr" itself
* that is passed to the function, but its address.
*
* We call patch_map on each map in "access" and return the combined results.
*/
static __isl_give isl_union_map *patch(__isl_take isl_union_map *access,
__isl_keep pet_expr *expr, int add)
{
isl_multi_pw_aff *prefix;
prefix = pet_expr_access_get_index(expr);
return pet_patch_union_map(prefix, access, add, 1);
}
/* Set the access relations of "expr", which appears in the argument
* at position "pos" in a call expression by composing the access
* relations in "summary" with the expression "int_arg" of the integer
* arguments in terms of the domain and expression arguments of "expr" and
* combining the result with the index expression passed to the function.
* If "add" is set, then it is not "expr" itself that is passed
* to the function, but the address of "expr".
*
* We reset the read an write flag of "expr" and rely on
* pet_expr_access_set_access setting the flags based on
* the access relations.
*
* After relating each access relation of the called function
* to the domain and expression arguments at the call site,
* the result is combined with the index expression by the function patch
* and then stored in the access expression.
*/
static __isl_give pet_expr *set_access_relations(__isl_take pet_expr *expr,
__isl_keep pet_function_summary *summary, int pos,
__isl_take isl_multi_pw_aff *int_arg, int add)
{
enum pet_expr_access_type type;
expr = pet_expr_access_set_read(expr, 0);
expr = pet_expr_access_set_write(expr, 0);
for (type = pet_expr_access_begin; type < pet_expr_access_end; ++type) {
isl_union_map *access;
access = pet_function_summary_arg_get_access(summary,
pos, type);
access = isl_union_map_preimage_domain_multi_pw_aff(access,
isl_multi_pw_aff_copy(int_arg));
access = patch(access, expr, add);
expr = pet_expr_access_set_access(expr, type, access);
}
isl_multi_pw_aff_free(int_arg);
return expr;
}
/* Set the access relations of "arg", which appears in the argument
* at position "pos" in the call expression "call" based on the
* information in "summary".
* If "add" is set, then it is not "arg" itself that is passed
* to the function, but the address of "arg".
*
* We create an affine function "int_arg" that expresses
* the integer function call arguments in terms of the domain of "arg"
* (i.e., the outer loop iterators) and the expression arguments.
* If the actual argument is not an affine expression or if it itself
* has expression arguments, then it is added as an argument to "arg" and
* "int_arg" is made to reference this additional expression argument.
*
* Finally, we call set_access_relations to plug in the actual arguments
* (expressed in "int_arg") into the access relations in "summary" and
* to add the resulting access relations to "arg".
*/
static __isl_give pet_expr *access_plug_in_summary(__isl_take pet_expr *arg,
__isl_keep pet_expr *call, __isl_keep pet_function_summary *summary,
int pos, int add)
{
int j, n;
isl_space *space;
isl_multi_pw_aff *int_arg;
int arg_n_arg;
space = pet_expr_access_get_augmented_domain_space(arg);
space = isl_space_from_domain(space);
arg_n_arg = pet_expr_get_n_arg(arg);
int_arg = isl_multi_pw_aff_zero(space);
n = pet_function_summary_get_n_arg(summary);
for (j = 0; j < n; ++j) {
pet_expr *arg_j;
int arg_j_n_arg;
if (!pet_function_summary_arg_is_int(summary, j))
continue;
arg_j = pet_expr_get_arg(call, j);
arg_j_n_arg = pet_expr_get_n_arg(arg_j);
if (pet_expr_get_type(arg_j) == pet_expr_int) {
int_arg = add_int(int_arg, arg_j);
} else if (arg_j_n_arg != 0 || !pet_expr_is_affine(arg_j)) {
arg = pet_expr_insert_arg(arg, arg_n_arg,
arg_j);
int_arg = add_arg(int_arg, arg_n_arg);
arg_n_arg++;
} else {
int_arg = add_aff(int_arg, arg_n_arg, arg_j);
}
}
arg = set_access_relations(arg, summary, pos, int_arg, add);
return arg;
}
/* Given the argument "arg" at position "pos" of "call",
* check if it is either an access expression or the address
* of an access expression. If so, use the information in "summary"
* to set the access relations of the access expression.
*/
static __isl_give pet_expr *arg_plug_in_summary(__isl_take pet_expr *arg,
__isl_keep pet_expr *call, __isl_keep pet_function_summary *summary,
int pos)
{
enum pet_expr_type type;
pet_expr *arg2;
type = pet_expr_get_type(arg);
if (type == pet_expr_access)
return access_plug_in_summary(arg, call, summary, pos, 0);
if (!pet_expr_is_address_of(arg))
return arg;
arg2 = pet_expr_get_arg(arg, 0);
if (pet_expr_get_type(arg2) == pet_expr_access)
arg2 = access_plug_in_summary(arg2, call, summary, pos, 1);
arg = pet_expr_set_arg(arg, 0, arg2);
return arg;
}
/* Given a call expression, check if the integer arguments can
* be represented by affine expressions in the context "pc"
* (assuming they are not already affine expressions).
* If so, replace these arguments by the corresponding affine expressions.
*/
static __isl_give pet_expr *call_plug_in_affine_args(__isl_take pet_expr *call,
__isl_keep pet_context *pc)
{
int i, n;
n = pet_expr_get_n_arg(call);
for (i = 0; i < n; ++i) {
pet_expr *arg;
isl_pw_aff *pa;
arg = pet_expr_get_arg(call, i);
if (!arg)
return pet_expr_free(call);
if (pet_expr_get_type_size(arg) == 0 ||
pet_expr_is_affine(arg)) {
pet_expr_free(arg);
continue;
}
pa = pet_expr_extract_affine(arg, pc);
pet_expr_free(arg);
if (!pa)
return pet_expr_free(call);
if (isl_pw_aff_involves_nan(pa)) {
isl_pw_aff_free(pa);
continue;
}
arg = pet_expr_from_index(isl_multi_pw_aff_from_pw_aff(pa));
call = pet_expr_set_arg(call, i, arg);
}
return call;
}
/* If "call" has an associated function summary, then use it
* to set the access relations of the array arguments of the function call.
*
* We first plug in affine expressions for the integer arguments
* whenever possible as these arguments will be plugged in
* in the access relations of the array arguments.
*/
static __isl_give pet_expr *call_plug_in_summary(__isl_take pet_expr *call,
void *user)
{
pet_context *pc = user;
pet_function_summary *summary;
int i, n;
if (!pet_expr_call_has_summary(call))
return call;
call = call_plug_in_affine_args(call, pc);
summary = pet_expr_call_get_summary(call);
if (!summary)
return pet_expr_free(call);
n = pet_expr_get_n_arg(call);
for (i = 0; i < n; ++i) {
pet_expr *arg_i;
if (!pet_function_summary_arg_is_array(summary, i))
continue;
arg_i = pet_expr_get_arg(call, i);
arg_i = arg_plug_in_summary(arg_i, call, summary, i);
call = pet_expr_set_arg(call, i, arg_i);
}
pet_function_summary_free(summary);
return call;
}
/* For each call subexpression of "expr", plug in the access relations
* from the associated function summary (if any).
*/
static __isl_give pet_expr *plug_in_summaries(__isl_take pet_expr *expr,
__isl_keep pet_context *pc)
{
return pet_expr_map_call(expr, &call_plug_in_summary, pc);
}
/* Given an access expression "expr", check that it is an affine
* access expression and set *only_affine to 1.
* If "expr" is not an affine access expression, then set *only_affine to 0
* and abort.
*/
static int check_only_affine(__isl_keep pet_expr *expr, void *user)
{
int *only_affine = user;
int is_affine;
is_affine = pet_expr_is_affine(expr);
if (is_affine < 0)
return -1;
if (!is_affine) {
*only_affine = 0;
return -1;
}
*only_affine = 1;
return 0;
}
/* Does "expr" have any affine access subexpression and no other
* access subexpressions?
*
* only_affine is initialized to -1 and set to 1 as soon as one affine
* access subexpression has been found and to 0 if some other access
* subexpression has been found. In this latter case, the search is
* aborted.
*/
static isl_bool has_only_affine_access_sub_expr(__isl_keep pet_expr *expr)
{
int only_affine = -1;
if (pet_expr_foreach_access_expr(expr, &check_only_affine,
&only_affine) < 0 &&
only_affine != 0)
return isl_bool_error;
return only_affine > 0;
}
/* Try and replace "expr" by an affine access expression by essentially
* evaluating operations and/or special calls on affine access expressions.
* It therefore only makes sense to do this if "expr" is a call or an operation
* and if it has at least one affine access subexpression and no other
* access subexpressions.
*/
static __isl_give pet_expr *expr_plug_in_affine(__isl_take pet_expr *expr,
void *user)
{
enum pet_expr_type type;
pet_context *pc = user;
isl_pw_aff *pa;
isl_bool contains_access;
type = pet_expr_get_type(expr);
if (type != pet_expr_call && type != pet_expr_op)
return expr;
contains_access = has_only_affine_access_sub_expr(expr);
if (contains_access < 0)
return pet_expr_free(expr);
if (!contains_access)
return expr;
pa = pet_expr_extract_affine(expr, pc);
if (!pa)
return pet_expr_free(expr);
if (isl_pw_aff_involves_nan(pa)) {
isl_pw_aff_free(pa);
return expr;
}
pet_expr_free(expr);
expr = pet_expr_from_index(isl_multi_pw_aff_from_pw_aff(pa));
return expr;
}
/* Detect affine subexpressions in "expr".
*
* The detection is performed top-down in order to be able
* to exploit the min/max optimization in comparisons.
* That is, if some subexpression is of the form max(a,b) <= min(c,d)
* and if the affine expressions were being detected bottom-up, then
* affine expressions for max(a,b) and min(c,d) would be constructed
* first and it would no longer be possible to optimize the extraction
* of the comparison as a <= c && a <= d && b <= c && b <= d.
*/
static __isl_give pet_expr *plug_in_affine(__isl_take pet_expr *expr,
__isl_keep pet_context *pc)