-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_fea.py
122 lines (106 loc) · 4.84 KB
/
test_fea.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
import datetime
import os.path as osp
import random
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from data import PFBP
from model.resnet import available_backbones, backbones
from util.file import exists_file
from util.logger import setup_logger
from util.timer import timer
from util.misc import ensure_path, Averager, count_acc
from util.torchtool import load_checkpoint
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--load-epoch', type=str, default='best')
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--train-way', type=int, default=5, help='number of classes')
parser.add_argument('--imgsz', type=int, help='imgsz', default=256)
parser.add_argument('--backbone', type=str, default='resnet18', choices=available_backbones)
parser.add_argument('--dataset', type=str, default='FBP5500')
parser.add_argument('--img-dir', type=str, default='faces')
parser.add_argument('--test-split-file', type=str, default='test.txt')
parser.add_argument('--work-dir', type=str, default='./save')
parser.add_argument('--data-root', type=str, default='../datasets')
parser.add_argument('--num-workers', type=int, default=6, help='number of workers for dataloader')
parser.add_argument('--print-freq', default=10, type=int, help='print batch log per ${print-freq} iter(s)')
parser.add_argument('--seed', default=2022, type=int, help='random seed for anything')
parser.add_argument('--cpu-only', action='store_true', help='run all with CPU')
args = parser.parse_args()
# Seed for anything
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
#Make dirs
args.log_dir = osp.join(args.work_dir, args.dataset, args.backbone)
args.model_dir = osp.join(args.log_dir, 'models')
ensure_path(args.model_dir)
# Set data dir
args.dataset_dir = osp.join(args.data_root, args.dataset)
# Logger
logger = setup_logger(osp.join(args.log_dir, 'test.txt'))
print('Args <========================')
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print('{}: {}'.format(key, args.__dict__[key]))
# Model
print('Model <========================')
device = 'cpu' if args.cpu_only or (not torch.cuda.is_available()) else 'cuda'
if device == 'cpu':
print('Warning: Run with CPU!!!')
model_class = backbones[args.backbone]
model = model_class(False, num_classes=args.train_way)
if args.load_epoch == 'best':
print(f'Using the model with best acc')
pth_file = osp.join(args.model_dir, 'best-acc.pth')
else:
epoch = int(args.load_epoch)
print(f'Using the model at epoch {epoch}')
pth_file = osp.join(args.model_dir, f'epoch-{epoch}.pth')
assert exists_file(pth_file), f'pth file({pth_file}) not found'
state_dict = load_checkpoint(pth_file)
print(f'Model info: train with {state_dict["epoch"]} epochs, cur acc: {state_dict["cur_acc"]:.3f}%[best: {state_dict["best_acc"]:.3f}%], save time: {state_dict["save_time"]}')
model.load_state_dict(state_dict['state_dict'])
model = model.to(device)
# Data
print('Data <========================')
img_dir = osp.join(args.dataset_dir, args.img_dir)
test_split_file = osp.join(args.dataset_dir, args.test_split_file)
testset = PFBP.FBP_nouser(img_dir, mode='test', resize=args.imgsz, setname=test_split_file)
test_loader = DataLoader(dataset=testset, batch_size=args.batch_size, shuffle=False, drop_last=False,
num_workers=args.num_workers, pin_memory=True)
print(f'Dataset info: {args.dataset}, Test size:{len(testset)}.')
# Timer
test_timer = timer()
# Loss function
criterion = nn.CrossEntropyLoss()
test_timer.tic()
tloss_avger = Averager()
tacc_avger = Averager()
print('Start Testing <========================')
model.eval()
with torch.no_grad():
for batch_idx, batch in enumerate(test_loader):
x, y = [_.to(device) for _ in batch]
y = y.squeeze(1)
output = model(x)
loss = criterion(output, y)
# log data
acc = count_acc(output, y)
tloss_avger.add(loss.item())
tacc_avger.add(acc)
if batch_idx % args.print_freq == 0:
print('Batch: {}/{}, Loss: {:.4f}, Acc: {:.4f}'
.format(batch_idx + 1, len(test_loader), loss.item(), acc))
tloss = tloss_avger.item()
tacc = tacc_avger.item() * 100
train_time = datetime.timedelta(seconds=test_timer.toc())
# log
print(
f'Test Summary: Test Loss: {tloss:.3f} | Test Acc: {tacc:.3f}% | Test Used Time: {train_time}')