-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSelectFromModel_MultinomialNB.py
251 lines (223 loc) · 12.2 KB
/
SelectFromModel_MultinomialNB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Run this code in the qiime2-2022.2 environment.
# Import modules and packages
import os
from os.path import join, exists, split, sep
from os import makedirs, getpid
from glob import glob
from shutil import rmtree
import csv
import json
import tempfile
import argparse
import pathlib
from itertools import product
from qiime2.plugins import feature_classifier
from qiime2 import Artifact
from joblib import Parallel, delayed
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.naive_bayes import MultinomialNB
from q2_feature_classifier.classifier import spec_from_pipeline
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectFromModel
from q2_types.feature_data import DNAIterator
from qiime2.plugin import Int, Str, Float, Bool, Choices, Range
from q2_types.feature_table import FeatureTable, RelativeFrequency
from q2_types.feature_data._transformer import (_read_from_fasta, _taxonomy_formats_to_dataframe,
_fastaformats_to_series)
from q2_feature_classifier._skl import _extract_reads, _specific_fitters, fit_pipeline
from q2_types.feature_data import (TSVTaxonomyFormat, HeaderlessTSVTaxonomyFormat,
FeatureData, Taxonomy, Sequence, DNAIterator,
DNAFASTAFormat)
from q2_feature_classifier.classifier import _load_class, spec_from_pipeline, pipeline_from_spec
from pandas import DataFrame
from tax_credit.framework_functions import (
gen_param_sweep, generate_per_method_biom_tables, move_results_to_repository)
# The below methods are used to load the data, prepare the data, parse the classifier and classification parameters, and fit and run the classifier.
def train_and_run_classifier(method_parameters_combinations, reference_dbs,
pipelines, sweep, verbose=False, n_jobs=4):
'''Train and run q2-feature-classifier across a parameter sweep.
method_parameters_combinations: dict of dicts of lists
Classifier methods to run and their parameters/values to sweep
Format: {method_name: {'parameter_name': [parameter_values]}}
reference_dbs: dict of tuples
Reference databases to use for classifier training.
Format: {database_name: (ref_seqs, ref_taxonomy)}
pipelines: dict
Classifier pipelines to use for training each method.
Format: {method_name: sklearn.pipeline.Pipeline}
sweep: list of tuples
output of gen_param_sweep(), format:
(parameter_output_dir, input_dir, reference_seqs, reference_tax, method, params)
n_jobs: number of jobs to run in parallel.
'''
# train classifier once for each pipeline param combo
for method, db, pipeline_param, subsweep in generate_pipeline_sweep(
method_parameters_combinations, reference_dbs, sweep):
ref_reads, ref_taxa = reference_dbs[db]
# train classifier
classifier = train_classifier(
ref_reads, ref_taxa, pipeline_param, pipelines[method], verbose=verbose)
# run classifier. Only run in parallel once classifier is trained,
# to minimize memory usage (don't want to train large refs in parallel)
Parallel(n_jobs=n_jobs)(delayed(run_classifier)(
classifier, output_dir, input_dir, split_params(params)[0], verbose=verbose)
for output_dir, input_dir, rs, rt, mt, params in subsweep)
def generate_pipeline_sweep(method_parameters_combinations, reference_dbs, sweep):
'''Generate pipeline parameters for each classifier training step'''
# iterate over parameters
for method, params in method_parameters_combinations.items():
# split out pipeline parameters
classifier_params, pipeline_params = split_params(params)
# iterate over reference dbs
for db, refs in reference_dbs.items():
# iterate over all pipeline parameter combinations
for param_product in product(*[params[id_] for id_ in pipeline_params]):
# yield parameter combinations to use for a each classifier
pipeline_param = dict(zip(pipeline_params, param_product))
subsweep = [p for p in sweep if split_params(p[5])[1]
== pipeline_param and p[2] == refs[0]]
yield method, db, pipeline_param, subsweep
def train_classifier(ref_reads, ref_taxa, params, pipeline, verbose=False):
ref_reads = Artifact.load(ref_reads)
ref_taxa = Artifact.load(ref_taxa)
pipeline.set_params(**params)
spec = json.dumps(spec_from_pipeline(pipeline))
if verbose:
print(spec)
classifier = feature_classifier.methods.fit_classifier_sklearn(ref_reads, ref_taxa, spec)
return classifier.classifier
def run_classifier(classifier, output_dir, input_dir, params, verbose=False):
# Classify the sequences
rep_seqs = Artifact.load(join(input_dir, 'rep_seqs.qza'))
if verbose:
print(output_dir)
classification = feature_classifier.methods.classify_sklearn(rep_seqs, classifier, **params)
# Save the results
makedirs(output_dir, exist_ok=True)
output_file = join(output_dir, 'taxonomy.tsv')
dataframe = classification.classification.view(DataFrame)
dataframe.to_csv(output_file, sep='\t', header=False)
def split_params(params):
classifier_params = feature_classifier.methods.classify_sklearn.signature.parameters.keys()
pipeline_params = {k:v for k, v in params.items()
if k not in classifier_params}
classifier_params = {k:v for k, v in params.items()
if k in classifier_params}
return classifier_params, pipeline_params
def build_pipeline(classifier, hash_params, feat_sel_params, classify_params):
return Pipeline([
('feat_ext', HashingVectorizer(**hash_params)),
('feat_sel', SelectFromModel(feat_sel_params)),
('classify', classifier(**classify_params))])
def main_wrapper_function(project_dir,analysis_name,data_dir,precomputed_dir,results_dir,reference_database_dir):
#Experienced users can create their own path.
project_dir = 'tax-credit-data'
analysis_name = 'mock-community'
data_dir = join(project_dir, 'data', analysis_name)
precomputed_dir = join(project_dir, 'data', 'precomputed-results', analysis_name)
results_dir = join(project_dir, 'temp_results_narrow')
if not os.path.exists(results_dir):
os.makedirs(results_dir)
reference_database_dir = join(project_dir, 'data','ref_dbs')
# Preparing the method/parameter combinations and generating commands
# Now we set the methods and method-specific parameters that we want to sweep.
# Modify to sweep other methods.
dataset_reference_combinations = [
('mock-1', 'gg_13_8_otus'),
('mock-2', 'gg_13_8_otus'),
('mock-3', 'gg_13_8_otus'),
('mock-4', 'gg_13_8_otus'),
('mock-5', 'gg_13_8_otus'),
('mock-6', 'gg_13_8_otus'),
('mock-7', 'gg_13_8_otus'),
('mock-8', 'gg_13_8_otus'),
('mock-12', 'gg_13_8_otus'),
('mock-13', 'gg_13_8_otus'),
('mock-14', 'gg_13_8_otus'),
('mock-15', 'gg_13_8_otus'),
('mock-16', 'gg_13_8_otus'),
('mock-18', 'gg_13_8_otus'),
('mock-19', 'gg_13_8_otus'),
('mock-20', 'gg_13_8_otus'),
('mock-21', 'gg_13_8_otus'),
('mock-22', 'gg_13_8_otus')]
method_parameters_combinations = {
'q2-SFM-NB': {'confidence': [0.7],
'classify__alpha': [0.001],
'feat_ext__ngram_range': [[8,8]],
'feat_sel__estimator': [MultinomialNB(0.001),MultinomialNB(0.01),MultinomialNB(0.1)],
'feat_sel__importance_getter':['feature_log_prob_'],
'feat_sel__max_features':[2000, 4000, 6000, 8000]}
}
# Test - use this to test smaller dataset/parameter combinations
#dataset_reference_combinations = [
# ('mock-1', 'gg_13_8_otus')
#]
#method_parameters_combinations = {
# 'q2-SFM-NB': {'confidence': [0.7],
# 'classify__alpha': [0.001],
# 'feat_ext__ngram_range': [[8,8]],
# 'feat_sel__estimator': [MultinomialNB(0.001)],
# 'feat_sel__importance_getter':['feature_log_prob_'],
# 'feat_sel__max_features':[2000]}
#}
reference_dbs = {'gg_13_8_otus' : (join(reference_database_dir, 'gg_13_8_otus/99_otus_v4.qza'),
join(reference_database_dir, 'gg_13_8_otus/99_otu_taxonomy_clean.tsv.qza'))}
# Preparing the pipelines
# pipeline params common to all classifiers are set here
hash_params = dict(
analyzer='char_wb', n_features=8192, ngram_range=[8, 8],alternate_sign=False)
# any params common to all classifiers can be set here
classify_params = dict()
# any params common to all feature selection methods can be set here
feat_sel_params = dict()
# Now fit the pipelines.
pipelines = {'q2-SFM-NB': build_pipeline(
MultinomialNB, hash_params, feat_sel_params, classify_params)}
# Do the Sweep
sweep = gen_param_sweep(data_dir, results_dir, reference_dbs,
dataset_reference_combinations,
method_parameters_combinations)
sweep = list(sweep)
# A quick sanity check
print(len(sweep))
sweep[0]
train_and_run_classifier(method_parameters_combinations, reference_dbs, pipelines, sweep, verbose=True,
n_jobs=1)
# Generate per-method biom tables.
# Don't change this unless filepaths were altered in the preceding cells.
taxonomy_glob = join(results_dir, 'mock-*', 'gg_13_8_otus', 'q2-SFM-NB', '*', 'taxonomy.tsv')
generate_per_method_biom_tables(taxonomy_glob, data_dir)
# Move result files to tax-credit-data repository (to push these results to the repository or compare with
#other precomputed results).
# Don't change this unless filepaths were altered in the preceding cells.
precomputed_results_dir = join(project_dir, "data", "precomputed-results", analysis_name)
method_dirs = glob(join(results_dir, '*', '*', '*', '*'))
move_results_to_repository(method_dirs, precomputed_results_dir)
def main():
parser = argparse.ArgumentParser(
description= 'The tax-credit-data directorsy contains all data used to prepare these codes. I use argparse to soft code important file paths needed to run this script. Experienced users can create their own paths')
req = parser.add_argument_group('REQUIRED')
req.add_argument('-r', '--project_dir', required=True, action='store', type=pathlib.Path,
help='Project_dir should be tax-credit-data directory')
req.add_argument('-a', '--analysis_name', required=True, action='store', type=pathlib.Path,
help='Analysis_name is called mock-community consisting of prepared mock communities')
req.add_argument('-d', '--data_dir', required=True, action='store', type=pathlib.Path,
help='Data_dir points to prepared data in the structure <tax-credit-data>/<data>/<analysis_name>/')
req.add_argument('-e', '--precomputed_dir', required=True, action='store', type=pathlib.Path,
help='Precomputed_dir points to precomputed results in the stucture <tax-credit-data>/<data>/<precomputer_results>/<analysis_name>/')
req.add_argument('-s', '--results_dir', required=True, action='store', type=pathlib.Path,
help='Results_dir temporary stores results')
req.add_argument('-f', '--reference_database_dir', required=True, action='store', type=pathlib.Path,
help='Reference_database_dir points to sequence and taxonomy data in the stucture <tax-credit-data>/<data>/<ref_dbs>/')
p = parser.parse_args()
project_dir = p.project_dir
analysis_name = p.analysis_name
data_dir = p.data_dir
precomputed_dir =p.precomputed_dir
results_dir = p.results_dir
reference_database_dir = p.reference_database_dir
main_wrapper_function(project_dir,analysis_name,data_dir,precomputed_dir,results_dir,reference_database_dir)
if __name__ == '__main__':
main()