forked from alumae/kaldi-gstreamer-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_full_post_processor.py
executable file
·57 lines (49 loc) · 1.9 KB
/
sample_full_post_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python
'''
Sample script that shows how to postprocess full results from the kaldi-gstreamer-worker, encoded as JSON.
It adds a sentence confidence score to the 1-best hypothesis, deletes all other hypotheses and
adds a dot (.) to the end of the 1-best hypothesis. It assumes that the results contain at least two hypotheses,
The confidence scores are now normalized
'''
import sys
import json
import logging
from math import exp
def post_process_json(str):
try:
event = json.loads(str)
if "result" in event:
if len(event["result"]["hypotheses"]) > 1:
likelihood1 = event["result"]["hypotheses"][0]["likelihood"]
likelihood2 = event["result"]["hypotheses"][1]["likelihood"]
confidence = likelihood1 - likelihood2
confidence = 1 - exp(-confidence)
else:
confidence = 1.0e+10;
event["result"]["hypotheses"][0]["confidence"] = confidence
event["result"]["hypotheses"][0]["transcript"] += "."
del event["result"]["hypotheses"][1:]
return json.dumps(event)
except:
exc_type, exc_value, exc_traceback = sys.exc_info()
logging.error("Failed to process JSON result: %s : %s " % (exc_type, exc_value))
return str
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG, format="%(levelname)8s %(asctime)s %(message)s ")
lines = []
while True:
l = sys.stdin.readline()
if not l: break # EOF
if l.strip() == "":
if len(lines) > 0:
result_json = post_process_json("".join(lines))
print result_json
print
sys.stdout.flush()
lines = []
else:
lines.append(l)
if len(lines) > 0:
result_json = post_process_json("".join(lines))
print result_json
lines = []