forked from Mcompetitions/M4-methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4Theta method.R
209 lines (175 loc) · 7.43 KB
/
4Theta method.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#This code can be used to reproduce the forecasts submitted to the M4 competition for the 4Theta method
#Authors: E. Spiliotis and V. Assimakopoulos (2017) / Forecasting & Strategy Unit - NTUA
#Method Description: Generalizing the Theta model for automatic forecasting
#Method Type: Statistical - Decomposition
library(forecast) #requires version 8.2
SeasonalityTest <- function(input, ppy){
#Used for determining whether the time series is seasonal
tcrit <- 1.645
if (length(input)<3*ppy){
test_seasonal <- FALSE
}else{
xacf <- acf(input, plot = FALSE)$acf[-1, 1, 1]
clim <- tcrit/sqrt(length(input)) * sqrt(cumsum(c(1, 2 * xacf^2)))
test_seasonal <- ( abs(xacf[ppy]) > clim[ppy] )
if (is.na(test_seasonal)==TRUE){ test_seasonal <- FALSE }
}
return(test_seasonal)
}
Theta.fit <- function(input, fh, theta, curve, model, seasonality , plot=FALSE){
#Used to fit a Theta model
#Check if the inputs are valid
if (theta<0){ theta <- 2 }
if (fh<1){ fh <- 1 }
#Estimate theta line weights
outtest <- naive(input, h=fh)$mean
if (theta==0){
wses <- 0
}else{
wses <- (1/theta)
}
wlrl <- (1-wses)
#Estimate seasonaly adjusted time series
ppy <- frequency(input)
if (seasonality=="N"){
des_input <- input ; SIout <- rep(1, fh) ; SIin <- rep(1, length(input))
}else if (seasonality=="A"){
Dec <- decompose(input, type="additive")
des_input <- input-Dec$seasonal
SIin <- Dec$seasonal
SIout <- head(rep(Dec$seasonal[(length(Dec$seasonal)-ppy+1):length(Dec$seasonal)], fh), fh)
}else{
Dec <- decompose(input, type="multiplicative")
des_input <- input/Dec$seasonal
SIin <- Dec$seasonal
SIout <- head(rep(Dec$seasonal[(length(Dec$seasonal)-ppy+1):length(Dec$seasonal)], fh), fh)
}
#If negative values, force to linear model
if (min(des_input)<=0){ curve <- "Lrl" ; model <- "A" }
#Estimate theta line zero
observations <- length(des_input)
xs <- c(1:observations)
xf = xff <- c((observations+1):(observations+fh))
dat=data.frame(des_input=des_input, xs=xs)
newdf <- data.frame(xs = xff)
if (curve=="Exp"){
estimate <- lm(log(des_input)~xs)
thetaline0In <- exp(predict(estimate))+input-input
thetaline0Out <- exp(predict(estimate, newdf))+outtest-outtest
}else{
estimate <- lm(des_input ~ poly(xs, 1, raw=TRUE))
thetaline0In <- predict(estimate)+des_input-des_input
thetaline0Out <- predict(estimate, newdf)+outtest-outtest
}
#Estimete Theta line (theta)
if (model=="A"){
thetalineT <- theta*des_input+(1-theta)*thetaline0In
}else if ((model=="M")&(all(thetaline0In>0)==T)&(all(thetaline0Out>0)==T)){
thetalineT <- (des_input^theta)*(thetaline0In^(1-theta))
}else{
model<-"A"
thetalineT <- theta*des_input+(1-theta)*thetaline0In
}
#forecasting TL2
sesmodel <- ses(thetalineT, h=fh)
thetaline2In <- sesmodel$fitted
thetaline2Out <- sesmodel$mean
#Theta forecasts
if (model=="A"){
forecastsIn <- as.numeric(thetaline2In*wses)+as.numeric(thetaline0In*wlrl)+des_input-des_input
forecastsOut <- as.numeric(thetaline2Out*wses)+as.numeric(thetaline0Out*wlrl)+outtest-outtest
}else if ((model=="M")&
(all(thetaline2In>0)==T)&(all(thetaline2Out>0)==T)&
(all(thetaline0In>0)==T)&(all(thetaline0Out>0)==T)){
forecastsIn <- ((as.numeric(thetaline2In)^(1/theta))*(as.numeric(thetaline0In)^(1-(1/theta))))+des_input-des_input
forecastsOut <- ((as.numeric(thetaline2Out)^(1/theta))*(as.numeric(thetaline0Out)^(1-(1/theta))))+outtest-outtest
}else{
model<-"A"
thetalineT <- theta*des_input+(1-theta)*thetaline0In
sesmodel <- ses(thetalineT,h=fh)
thetaline2In <- sesmodel$fitted
thetaline2Out <- sesmodel$mean
forecastsIn <- as.numeric(thetaline2In*wses)+as.numeric(thetaline0In*wlrl)+des_input-des_input
forecastsOut <- as.numeric(thetaline2Out*wses)+as.numeric(thetaline0Out*wlrl)+outtest-outtest
}
#Seasonal adjustments
if (seasonality=="A"){
forecastsIn <- forecastsIn+SIin
forecastsOut <- forecastsOut+SIout
}else{
forecastsIn <- forecastsIn*SIin
forecastsOut <- forecastsOut*SIout
}
#Zero forecasts become positive
for (i in 1:length(forecastsOut)){
if (forecastsOut[i]<0){ forecastsOut[i] <- 0 }
}
if (plot==TRUE){
united <- cbind(input,forecastsOut)
for (ik in 1:(observations+fh)){ united[ik,1] = sum(united[ik,2],united[ik,1], na.rm = TRUE) }
plot(united[,1],col="black",type="l",main=paste("Model:",model,",Curve:",curve,",Theta:",theta),xlab="Time",ylab="Values",
ylim=c(min(united[,1])*0.85,max(united[,1])*1.15))
lines(forecastsIn, col="green") ; lines(forecastsOut, col="green")
lines(thetaline2In, col="blue") ; lines(thetaline2Out, col="blue")
lines(thetaline0In, col="red") ; lines(thetaline0Out, col="red")
}
output=list(fitted=forecastsIn,mean=forecastsOut,
fitted0=thetaline0In,mean0=thetaline0Out,
fitted2=thetaline2In,mean2=thetaline2Out,
model=paste(seasonality,model,curve,c(round(theta,2))))
return(output)
}
FourTheta<- function(input, fh){
#Used to automatically select the best Theta model
#Scale
base <- mean(input) ; input <- input/base
molist <- c("M","A") ; trlist <- c("Lrl","Exp")
#Check seasonality & Create list of models
ppy <- frequency(input) ; ST <- F
if (ppy>1){ ST <- SeasonalityTest(input, ppy) }
if (ST==T){
selist <- c("M","A")
listnames <- c()
for (i in 1:length(selist)){
for (ii in 1:length(molist)){
for (iii in 1:length(trlist)){
listnames <- c(listnames,paste(selist[i], molist[ii], trlist[iii]))
}
}
}
}else{
listnames <- c()
for (ii in 1:length(molist)){
for (iii in 1:length(trlist)){
listnames <- c(listnames, paste("N", molist[ii], trlist[iii]))
}
}
}
modellist <- NULL
for (i in 1:length(listnames)){
modellist[length(modellist)+1] <- list(c(substr(listnames,1,1)[i], substr(listnames,3,3)[i],
substr(listnames,5,7)[i]))
}
#Start validation
errorsin <- c() ; models <- NULL
#With this function determine opt theta per case
optfun <- function(x, input, fh, curve, model, seasonality){
mean(abs(Theta.fit(input=input, fh, theta=x, curve, model, seasonality , plot=FALSE)$fitted-input))
}
for (j in 1:length(listnames)){
optTheta <- optimize(optfun, c(1:3),
input=input, fh=fh, curve=modellist[[j]][3], model=modellist[[j]][2],
seasonality=modellist[[j]][1])$minimum
fortheta <- Theta.fit(input=input, fh=fh, theta=optTheta, curve=modellist[[j]][3], model=modellist[[j]][2],
seasonality=modellist[[j]][1], plot=F)
models[length(models)+1] <- list(fortheta)
errorsin <- c(errorsin, mean(abs(input-fortheta$fitted)))
}
#Select model and export
selected.model <- models[[which.min(errorsin)]]
description <- selected.model$model
output <- list(fitted=selected.model$fitted*base,mean=selected.model$mean*base,
description=description)
#Returns the fitted and forecasted values, as well as the model used (Type of seasonality, Type of Model, Type of Trend, Theta coef.)
return(output)
}