-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdraggan_stylegan2_realimg.py
291 lines (250 loc) · 12.2 KB
/
draggan_stylegan2_realimg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import torch.nn.functional as functional
from training.networks_stylegan2 import Generator
import dnnlib
import numpy as np
from PIL import Image
import os
import shutil
import copy
def points2mask(src_points, tar_points):
points = src_points + tar_points
x_min = 512
x_max = 0
y_min = 512
y_max = 0
for p in points:
if p[0] > x_max:
x_max = p[0]
if p[0] < x_min:
x_min = p[0]
if p[1] > y_max:
y_max = p[1]
if p[1] < y_min:
y_min = p[1]
c_x, c_y = int((x_min + x_max) / 2), int((y_min + y_max) / 2)
r = int(np.sqrt((x_max - x_min) ** 2 + (y_max - y_min) ** 2) / 2)
mask = np.zeros([512, 512])
mask[c_y-r:c_y+r, c_x-r:c_x+r] = np.ones([2*r, 2*r])
return mask
def omega_p_r1(point, r1=3):
x0, y0 = point[0], point[1]
qs = []
for x in range(max(int(x0-r1), 0), min(int(x0+r1), 512)):
y_max = y0 + np.sqrt(r1 ** 2 - (x - x0) ** 2)
y_min = y0 - np.sqrt(r1 ** 2 - (x - x0) ** 2)
for y in range(int(y_min), int(y_max)):
qs.append(np.array([x, y]))
return qs
def omega_p_r2(point, r2=12):
x0, y0 = point[0], point[1]
qs = []
for x in range(max(int(x0-r2), 0), min(int(x0+r2), 512)):
for y in range(max(int(y0-r2), 0), min(int(y0+r2), 512)):
qs.append(np.array([x, y]))
return qs
def bilinear(point, feature):
x, y = point[0], point[1]
x1, x2 = int(x - 1), int(x + 1)
y2, y1 = int(y - 1), int(y + 1)
f_q11 = feature[..., y1, x1]
f_q12 = feature[..., y2, x1]
f_q21 = feature[..., y1, x2]
f_q22 = feature[..., y2, x2]
f_R1 = (x2 - x) / (x2 - x1) * f_q11 + (x - x1) / (x2 - x1) * f_q21
f_R2 = (x2 - x) / (x2 - x1) * f_q12 + (x - x1) / (x2 - x1) * f_q22
f_P = (y2 - y) / (y2 - y1) * f_R1 + (y - y1) / (y2 - y1) * f_R2
return f_P
def motion_supervision(src_points, tar_points, F, M, F0, r1=3, lambd=20):
F = functional.interpolate(F, [512, 512], mode="bilinear")
F0 = functional.interpolate(F0, [512, 512], mode="bilinear")
L_motion = 0
for src_p, tar_p in zip(src_points, tar_points):
if np.sqrt(np.sum(np.square(src_p - tar_p))) != 0:
d = (tar_p - src_p) / np.sqrt(np.sum(np.square(src_p - tar_p)))
qs = omega_p_r1(src_p, r1=r1)
for q in qs:
F_q = F[..., int(q[1]), int(q[0])]
F_q_d = bilinear(q + d, F)
L_motion += torch.mean(torch.abs(F_q.detach() - F_q_d))
L_motion += torch.mean(torch.abs(F - F0) * (1 - M)) * lambd
return L_motion
def point_tracking(src_points, F, F0, src_points_0, r2=12):
F = functional.interpolate(F, [512, 512], mode="bilinear")
F0 = functional.interpolate(F0, [512, 512], mode="bilinear")
best_q = []
for src_p, src_p_0 in zip(src_points, src_points_0):
f_i = F0[..., src_p_0[1], src_p_0[0]]
qs = omega_p_r2(src_p, r2=r2)
dist_min = np.inf
for q in qs:
F_q = F[..., int(q[1]), int(q[0])]
dist = torch.mean(torch.abs(F_q - f_i))
if dist < dist_min:
dist_min = dist
q_min = q
best_q.append(q_min)
return best_q
class DragGAN:
def __init__(self, ckpt, device) -> None:
self.G = Generator(z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3).to(device)
self.G.load_state_dict(torch.load(ckpt))
self.device = device
def gen_image(self, seed, latent=None):
label = torch.zeros([1, self.G.c_dim], device=self.device).to(self.device)
if latent == None:
z = torch.from_numpy(np.random.RandomState(seed).randn(1, self.G.z_dim)).to(self.device)
latent = self.G.mapping(z, label, truncation_psi=1.0, truncation_cutoff=None, update_emas=False)
img, feats = self.G.synthesis(latent, update_emas=False, noise_mode="const")
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return img[0].cpu().numpy()
def projector(self, target):
assert target.shape == (self.G.img_channels, self.G.img_resolution, self.G.img_resolution)
w_avg_samples = 10000
num_steps = 1000
initial_learning_rate = 0.1
initial_noise_factor = 0.05
noise_ramp_length = 0.75
lr_rampdown_length = 0.25
lr_rampup_length = 0.05
regularize_noise_weight = 1e5
G = copy.deepcopy(self.G).eval().requires_grad_(False).to(self.device) # type: ignore
# Compute w stats.
z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim)
w_samples = G.mapping(torch.from_numpy(z_samples).to(self.device), None) # [N, L, C]
w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32) # [N, 1, C]
w_avg = np.mean(w_samples, axis=0, keepdims=True) # [1, 1, C]
w_std = (np.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5
# Setup noise inputs.
noise_bufs = { name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name }
# Load VGG16 feature detector.
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
with dnnlib.util.open_url(url) as f:
vgg16 = torch.jit.load(f).eval().to(self.device)
# Features for target image.
target_images = target.unsqueeze(0).to(self.device).to(torch.float32)
if target_images.shape[2] > 256:
target_images = functional.interpolate(target_images, size=(256, 256), mode='area')
target_features = vgg16(target_images, resize_images=False, return_lpips=True)
w_opt = torch.tensor(w_avg, dtype=torch.float32, device=self.device, requires_grad=True) # pylint: disable=not-callable
w_out = torch.zeros([num_steps] + list(w_opt.shape[1:]), dtype=torch.float32, device=self.device)
optimizer = torch.optim.Adam([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999), lr=initial_learning_rate)
# Init noise.
for buf in noise_bufs.values():
buf[:] = torch.randn_like(buf)
buf.requires_grad = True
for step in range(num_steps):
# Learning rate schedule.
t = step / num_steps
w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2
lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
lr = initial_learning_rate * lr_ramp
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Synth images from opt_w.
w_noise = torch.randn_like(w_opt) * w_noise_scale
ws = (w_opt + w_noise).repeat([1, G.mapping.num_ws, 1])
synth_images, feats = G.synthesis(ws, noise_mode='const')
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
synth_images = (synth_images + 1) * (255/2)
if synth_images.shape[2] > 256:
synth_images = functional.interpolate(synth_images, size=(256, 256), mode='area')
# Features for synth images.
synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
dist = (target_features - synth_features).square().sum()
# Noise regularization.
reg_loss = 0.0
for v in noise_bufs.values():
noise = v[None,None,:,:] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise*torch.roll(noise, shifts=1, dims=3)).mean()**2
reg_loss += (noise*torch.roll(noise, shifts=1, dims=2)).mean()**2
if noise.shape[2] <= 8:
break
noise = functional.avg_pool2d(noise, kernel_size=2)
loss = dist + reg_loss * regularize_noise_weight
# Step
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(f'step {step+1:>4d}/{num_steps}: dist {dist:<4.2f} loss {float(loss):<5.2f}')
# Save projected W for each optimization step.
w_out[step] = w_opt.detach()[0]
# Normalize noise.
with torch.no_grad():
for buf in noise_bufs.values():
buf -= buf.mean()
buf *= buf.square().mean().rsqrt()
return w_out.repeat([1, G.mapping.num_ws, 1])[-2:-1]
def train(self, src_points, tar_points, M, seed=100, latent=None):
label = torch.zeros([1, self.G.c_dim], device=self.device).to(self.device)
if latent == None:
z = torch.from_numpy(np.random.RandomState(seed).randn(1, self.G.z_dim)).to(self.device)
latent = self.G.mapping(z, label, truncation_psi=1.0, truncation_cutoff=None, update_emas=False)
latent_trainable = latent[:, :12, :].detach().clone().requires_grad_(True)
latent_untrainable = latent[:, 12:, :].detach().clone().requires_grad_(False)
opt = torch.optim.Adam([latent_trainable], lr=2e-3)
res = []
res_points = []
for i in range(200):
latent = torch.cat([latent_trainable, latent_untrainable], dim=1)
if i < 1:
img, feats = self.G.synthesis(latent, update_emas=False, noise_mode="const")
F = feats[6]
F0 = feats[6].detach()
src_points_0 = src_points
L_motion = motion_supervision(src_points, tar_points, F, M, F0, r1=3, lambd=20)
opt.zero_grad()
L_motion.backward()
opt.step()
else:
img, feats = self.G.synthesis(latent, update_emas=False, noise_mode="const")
F = feats[6]
src_points = point_tracking(src_points, F, F0, src_points_0, r2=12)
L_motion = motion_supervision(src_points, tar_points, F, M, F0, r1=3, lambd=20)
opt.zero_grad()
L_motion.backward()
opt.step()
dist = 0
for sp, tp in zip(src_points, tar_points):
dist += np.sqrt(np.sum(np.square(sp - tp)))
if dist < 5:
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
res.append(img[0].cpu().numpy())
break
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
res.append(img[0].cpu().numpy())
res_points.append(src_points)
if i % 10 == 0:
print("L_motion:", L_motion.item(), "Drag points:", src_points, "target points:", tar_points)
return res, res_points
if __name__ == "__main__":
real_img_path = "resources/lion.png"
src_points = [np.array([281, 286]), np.array([279, 363])]
tar_points = [np.array([359, 257]), np.array([356, 346])]
# mask = points2mask(src_points, tar_points)
# M = torch.tensor(mask[None, None], dtype=torch.float32).cuda()
M = torch.ones([1, 1, 512, 512]).cuda()
seed = 600
draggan = DragGAN("stylegan2-afhqwild-512x512.pt", device="cuda")
real_img = np.array(Image.open(real_img_path).resize([512, 512]))[..., :3]
real_img = torch.tensor(real_img).permute(2, 0, 1)
latent = draggan.projector(real_img)
init_img = draggan.gen_image(seed=seed, latent=latent)
Image.fromarray(np.uint8(init_img)).save("project.png")
res, res_points = draggan.train(src_points, tar_points, M, seed=seed, latent=latent)
if os.path.exists("./results"):
shutil.rmtree("./results")
os.mkdir("./results")
for idx, (img, point) in enumerate(zip(res, res_points)):
for p, t in zip(point, tar_points):
red_patch = np.zeros([6, 6, 3])
red_patch[..., 0] = np.ones([6, 6]) * 255
blue_patch = np.zeros([6, 6, 3])
blue_patch[..., 2] = np.ones([6, 6]) * 255
img[p[1]-3:p[1]+3, p[0]-3:p[0]+3] = red_patch
img[t[1]-3:t[1]+3, t[0]-3:t[0]+3] = blue_patch
Image.fromarray(np.uint8(img)).save(f"./results/{idx+1}.png")
os.system(f"ffmpeg -r 24 -i results/%1d.png -pix_fmt yuv420p -c:v libx264 {seed}.mp4")