-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdraggan_stylegan3.py
142 lines (125 loc) · 5.9 KB
/
draggan_stylegan3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn.functional as functional
from training.networks_stylegan3 import Generator
import numpy as np
from PIL import Image
def omega_p_r1(point, r1=3):
x0, y0 = point[0], point[1]
qs = []
for x in range(max(int(x0-r1), 0), min(int(x0+r1), 512)):
y_max = y0 + np.sqrt(r1 ** 2 - (x - x0) ** 2)
y_min = y0 - np.sqrt(r1 ** 2 - (x - x0) ** 2)
for y in range(int(y_min), int(y_max)):
qs.append(np.array([x, y]))
return qs
def omega_p_r2(point, r2=12):
x0, y0 = point[0], point[1]
qs = []
for x in range(max(int(x0-r2), 0), min(int(x0+r2), 512)):
for y in range(max(int(y0-r2), 0), min(int(y0+r2), 512)):
qs.append(np.array([x, y]))
return qs
def bilinear(point, feature):
x, y = point[0], point[1]
x1, x2 = int(x - 1), int(x + 1)
y2, y1 = int(y - 1), int(y + 1)
f_q11 = feature[..., y1, x1]
f_q12 = feature[..., y2, x1]
f_q21 = feature[..., y1, x2]
f_q22 = feature[..., y2, x2]
f_R1 = (x2 - x) / (x2 - x1) * f_q11 + (x - x1) / (x2 - x1) * f_q21
f_R2 = (x2 - x) / (x2 - x1) * f_q12 + (x - x1) / (x2 - x1) * f_q22
f_P = (y2 - y) / (y2 - y1) * f_R1 + (y - y1) / (y2 - y1) * f_R2
return f_P
def motion_supervision(src_points, tar_points, F, M, F0, r1=3, lambd=20):
F = functional.interpolate(F, [512, 512], mode="bilinear")
F0 = functional.interpolate(F0, [512, 512], mode="bilinear")
L_motion = 0
for src_p, tar_p in zip(src_points, tar_points):
d = (tar_p - src_p) / np.sqrt(np.sum(np.square(src_p - tar_p)))
qs = omega_p_r1(src_p, r1=r1)
for q in qs:
F_q = F[..., int(q[1]), int(q[0])]
F_q_d = bilinear(q + d, F)
L_motion += torch.mean(torch.abs(F_q.detach() - F_q_d))
L_motion += torch.mean(torch.abs(F - F0) * (1 - M)) * lambd
return L_motion
def point_tracking(src_points, F, F0, src_points_0, r2=12):
F = functional.interpolate(F, [512, 512], mode="bilinear")
F0 = functional.interpolate(F0, [512, 512], mode="bilinear")
best_q = []
for src_p, src_p_0 in zip(src_points, src_points_0):
f_i = F0[..., src_p_0[1], src_p_0[0]]
qs = omega_p_r2(src_p, r2=r2)
dist_min = np.inf
for q in qs:
F_q = F[..., int(q[1]), int(q[0])]
dist = torch.mean(torch.abs(F_q - f_i))
if dist < dist_min:
dist_min = dist
q_min = q
best_q.append(q_min)
return best_q
class DragGAN:
def __init__(self, ckpt, device) -> None:
self.G = Generator(z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3).to(device)
print(torch.load(ckpt))
print(self.G)
print(ckpt)
self.G.load_state_dict(torch.load(ckpt))
self.device = device
def gen_image(self, seed):
label = torch.zeros([1, self.G.c_dim], device=self.device).to(self.device)
z = torch.from_numpy(np.random.RandomState(seed).randn(1, self.G.z_dim)).to(self.device)
latent = self.G.mapping(z, label, truncation_psi=1.0, truncation_cutoff=None, update_emas=False)
img, feats = self.G.synthesis(latent, update_emas=False, noise_mode="const")
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return img[0].cpu().numpy()
def train(self, src_points, tar_points, M, seed=100):
label = torch.zeros([1, self.G.c_dim], device=self.device).to(self.device)
z = torch.from_numpy(np.random.RandomState(seed).randn(1, self.G.z_dim)).to(self.device)
latent = self.G.mapping(z, label, truncation_psi=1.0, truncation_cutoff=None, update_emas=False)
latent_trainable = latent[:, :12, :].detach().clone().requires_grad_(True)
latent_untrainable = latent[:, 12:, :].detach().clone().requires_grad_(False)
opt = torch.optim.Adam([latent_trainable], lr=2e-3)
res = []
for i in range(300):
latent = torch.cat([latent_trainable, latent_untrainable], dim=1)
if i < 1:
img, feats = self.G.synthesis(latent, update_emas=False, noise_mode="const")
F = feats[6]
F0 = feats[6].detach()
src_points_0 = src_points
L_motion = motion_supervision(src_points, tar_points, F, M, F0, r1=3, lambd=20)
opt.zero_grad()
L_motion.backward()
opt.step()
else:
img, feats = self.G.synthesis(latent, update_emas=False, noise_mode="const")
F = feats[6]
src_points = point_tracking(src_points, F, F0, src_points_0, r2=12)
L_motion = motion_supervision(src_points, tar_points, F, M, F0, r1=3, lambd=20)
opt.zero_grad()
L_motion.backward()
opt.step()
if np.sqrt(np.sum(np.square(src_points[0] - tar_points[0]))) < 5:
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
res.append(img[0].cpu().numpy())
break
if i % 10 == 0:
print("L_motion:", L_motion.item(), "Drag points:", src_points, "target points:", tar_points)
if i % 30 == 0:
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
res.append(img[0].cpu().numpy())
return res
if __name__ == "__main__":
src_points = [np.array([191, 226]), np.array([323, 229])]
tar_points = [np.array([188, 247]), np.array([319, 215])]
M = torch.ones([1, 1, 512, 512]).cuda()
seed = 100
draggan = DragGAN("stylegan3-r-afhqv2-512x512.pt", device="cuda")
init_img = draggan.gen_image(seed=seed)
Image.fromarray(np.uint8(init_img)).save("init_img.png")
res = draggan.train(src_points, tar_points, M, seed=seed)
res = np.concatenate(res, axis=1)
Image.fromarray(np.uint8(res)).save("drag_img.png")