From fcc18c2c70428d9cb3f519618f2dc0a970085627 Mon Sep 17 00:00:00 2001 From: RexBerry <59031902+RexBerry@users.noreply.github.com> Date: Thu, 20 Oct 2022 18:24:42 -0500 Subject: [PATCH] Add weights to polynomial regression #16 --- flight/avoidance/obstacle_avoidance.py | 33 +++++++++++++++++++++----- 1 file changed, 27 insertions(+), 6 deletions(-) diff --git a/flight/avoidance/obstacle_avoidance.py b/flight/avoidance/obstacle_avoidance.py index 618eec63..a1dcec16 100644 --- a/flight/avoidance/obstacle_avoidance.py +++ b/flight/avoidance/obstacle_avoidance.py @@ -157,6 +157,9 @@ async def calculate_avoidance_path( The avoidance path, consisting of a list of waypoints """ + # Convert obstacle data to list of Point + obstacle_positions: list[Point] = [Point.from_dict(in_point) for in_point in obstacle_data] + # Get position of drone raw_drone_position: mavsdk.telemetry.Position async for position in drone.telemetry.position(): @@ -166,9 +169,6 @@ async def calculate_avoidance_path( # Convert drone position to UTM Point drone_position: Point = Point.from_mavsdk_position(raw_drone_position) - # Convert obstacle data to list of Point - obstacle_positions: list[Point] = [Point.from_dict(in_point) for in_point in obstacle_data] - # TODO: Make the function work if UTM zones differ # Check if all positions are in the same UTM zone point: Point @@ -191,6 +191,8 @@ async def calculate_avoidance_path( # Units don't change, only the type of the object drone_velocity: Velocity = Velocity.from_mavsdk_velocityned(raw_drone_velocity) + obstacle_positions.sort(key=lambda p: p.time or 0.0) + # Degree of polynomial used in polynomial regression polynomial_degree: int = 3 # Create list of times @@ -201,18 +203,37 @@ async def calculate_avoidance_path( # Should hopefully never fail, otherwise I will have a mental breakdown assert len(obstacle_times) == len(obstacle_positions) + # Get weights for polynomial regression + # The most recent point should have the highest weight + weights: range = range( + 1, len(obstacle_times) + 1 + ) # For some reason range objects can be reused + # TODO: Research better models for predicting the obstacle's path # Use polynomial regression to model the obstacle's path # The polynomial is arr[0] * t**n + arr[1] * t**(n - 1) + ... + arr[n - 1] * t + arr[n] x_polynomial: list[float] = list( - np.polyfit([point.utm_x for point in obstacle_positions], obstacle_times, polynomial_degree) + np.polyfit( + [point.utm_x for point in obstacle_positions], + obstacle_times, + polynomial_degree, + w=weights, + ) ) y_polynomial: list[float] = list( - np.polyfit([point.utm_y for point in obstacle_positions], obstacle_times, polynomial_degree) + np.polyfit( + [point.utm_y for point in obstacle_positions], + obstacle_times, + polynomial_degree, + w=weights, + ) ) altitude_polynomial: list[float] = list( np.polyfit( - [point.altitude for point in obstacle_positions], obstacle_times, polynomial_degree + [point.altitude for point in obstacle_positions], + obstacle_times, + polynomial_degree, + w=weights, ) )