-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpointwise_rerank_instupr.py
144 lines (125 loc) · 6.32 KB
/
pointwise_rerank_instupr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import math
import torch
from tqdm import tqdm
from openai import OpenAI
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoTokenizer, AutoModelForSequenceClassification
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='pointwise reranking with InstUPR (flan-t5)')
parser.add_argument('--runfile', type=str, help='path to the run file', required=True)
parser.add_argument('--output', type=str, help='path to the output file', required=True)
parser.add_argument('--collection', type=str, help='path to collection.tsv', required=True)
parser.add_argument('--queries', type=str, help='path to queries.tsv', required=True)
parser.add_argument('--model', type=str, default="google/flan-t5-xl")
parser.add_argument('--openai', action='store_true', help='whether to use the openai api')
parser.add_argument('--batch_size', type=int, default=8, help='batch size for inference')
parser.add_argument('--max_length', type=int, default=1024, help='max length for inference')
parser.add_argument('--use_title', action='store_true', help='use the title of the passage as context')
parser.add_argument('--n_passages', type=int, default=100, help='number of passages to rerank')
parser.add_argument('--prev_rerank_file', type=str, default=None, help='path to the previous rerank file')
args = parser.parse_args()
# Read the collection
print("Reading the collection...")
collection = {}
with open(args.collection, 'r') as f:
for line in f:
if args.use_title:
docid, text, title = line.split('\t')
collection[docid] = title + " " + text
else:
docid, text = line.split('\t')
collection[docid] = text
# Read the queries
print("Reading the queries...")
queries = {}
with open(args.queries, 'r') as f:
for line in f:
qid, text = line.strip().split('\t')
queries[qid] = text
# Read the run file
print("Reading the run file...")
run = {}
with open(args.runfile, 'r') as f:
for line in f:
qid, docid, rank, score = line.strip().split('\t')
if qid not in run:
run[qid] = []
run[qid].append(docid)
# Read the previous rerank file
prev_rerank = {}
if args.prev_rerank_file:
print("Reading the previous rerank file...")
with open(args.prev_rerank_file, 'r') as f:
for line in f:
qid, docid, score_true, score_false = line.strip().split('\t')
if qid not in prev_rerank:
prev_rerank[qid] = {}
prev_rerank[qid][docid] = [float(score_true), float(score_false)]
if args.openai:
client = OpenAI()
else:
# Load the model
print("Loading the model...")
model = T5ForConditionalGeneration.from_pretrained(args.model, torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(args.model, legacy=True, use_fast=True)
model.eval()
model = model.cuda()
# Filter the qids in run that are not in queries
qids = [qid for qid in run if qid in queries]
all_passages = []
all_scores = []
for qid in tqdm(qids):
# Only rerank top n_passages passages
passages_scored, passages = [], []
scores = []
for docid in run[qid][:args.n_passages]:
if docid in prev_rerank.get(qid, {}):
scores.append(prev_rerank[qid][docid])
passages_scored.append(docid)
else:
passages.append(docid)
# Rerank the passages
if len(passages) > 0:
inputs = []
for docid in passages:
# inputs.append(f"Given a query and a context, answer whether the context is relevant to the query (Yes or No).\n\nQuery: {queries[qid]}\n\nContext: {collection[docid]}")
inputs.append(f"Is the document relevant to the query (Yes or No)?\n\nQuery: {queries[qid]}\n\nDocument: {collection[docid]}")
if args.openai:
for prompt in inputs:
response = client.chat.completions.create(
model=args.model,
messages=[
# {"role": "system", "content": "You are a helpful assistant. Answer the question directly with 'Yes' or 'No'."},
{"role": "user", "content": prompt}
],
max_tokens=1,
logprobs=True,
top_logprobs=4
)
logprob = -999.0
for top_logprob in response.choices[0].logprobs.content[0].top_logprobs:
if top_logprob.token == "Yes":
logprob = top_logprob.logprob
break
prob_yes = torch.tensor(logprob).exp()
logit = (prob_yes.log() - (1 - prob_yes).log()).item()
scores.append([logit, 0.0])
else:
for i in range(0, len(inputs), args.batch_size):
batch_inputs = inputs[i : i + args.batch_size]
batch_inputs = tokenizer(batch_inputs, return_tensors="pt", padding=True, truncation=True, max_length=args.max_length)
# Generate the outputs with scores
outputs = model.generate(batch_inputs['input_ids'].cuda(), attention_mask=batch_inputs['attention_mask'].cuda(), return_dict_in_generate=True, output_scores=True, max_new_tokens=1)
probs = outputs.scores[0][:, [2163, 465]].softmax(dim=-1)
probs_yes = probs[:, 0]
# Inverse sigmoid
logits = (probs_yes.log() - (1 - probs_yes).log()).cpu().tolist()
scores.extend([[logit, 0.0] for logit in logits])
passages = passages_scored + passages
passages = [(qid, docid) for docid in passages]
all_passages.extend(passages)
all_scores.extend(scores)
# Write the output
with open(args.output, 'w') as f:
for (qid, docid), (score_true, score_false) in zip(all_passages, all_scores):
f.write(f"{qid}\t{docid}\t{round(score_true, 6)}\t{round(score_false, 6)}\n")