-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocess_rerank.py
36 lines (30 loc) · 1.28 KB
/
process_rerank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import argparse
import time
import random
import torch
import torch.nn.functional as F
from tqdm import tqdm
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='pointwise reranking with monoT5')
parser.add_argument('--runfile', type=str, help='path to the run file', required=True)
parser.add_argument('--output', type=str, help='path to the output file', required=True)
parser.add_argument('--softmax', action='store_true', help='whether to use softmax')
args = parser.parse_args()
# Read the run file
print("Reading the run file...")
run = {}
with open(args.runfile, 'r') as f:
for line in f:
qid, docid, score_true, score_false = line.strip().split('\t')
if qid not in run:
run[qid] = []
if args.softmax:
prob = F.softmax(torch.tensor([float(score_true), float(score_false)]), dim=0)[0].log().item()
else:
prob = float(score_true)
run[qid].append((docid, prob))
with open(args.output, 'w') as f:
for qid in tqdm(run):
run[qid] = sorted(run[qid], key=lambda x: x[1], reverse=True)
for rank, (docid, score) in enumerate(run[qid]):
f.write(f'{qid}\t{docid}\t{rank + 1}\t{score}\n')