-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFeatureSelection.py
151 lines (112 loc) · 4.5 KB
/
FeatureSelection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# -*- coding: utf-8 -*-
import DataPrep
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import Pipeline
import nltk
import nltk.corpus
from nltk.tokenize import word_tokenize
from gensim.models.word2vec import Word2Vec
#we will start with simple bag of words technique
#creating feature vector - document term matrix
countV = CountVectorizer()
train_count = countV.fit_transform(DataPrep.train_news['Statement'].values)
print(countV)
print(train_count)
#print training doc term matrix
#we have matrix of size of (10240, 12196) by calling below
def get_countVectorizer_stats():
#vocab size
train_count.shape
#check vocabulary using below command
print(countV.vocabulary_)
#get feature names
print(countV.get_feature_names()[:25])
#create tf-df frequency features
#tf-idf
tfidfV = TfidfTransformer()
train_tfidf = tfidfV.fit_transform(train_count)
def get_tfidf_stats():
train_tfidf.shape
#get train data feature names
print(train_tfidf.A[:10])
#bag of words - with n-grams
#countV_ngram = CountVectorizer(ngram_range=(1,3),stop_words='english')
#tfidf_ngram = TfidfTransformer(use_idf=True,smooth_idf=True)
tfidf_ngram = TfidfVectorizer(stop_words='english',ngram_range=(1,4),use_idf=True,smooth_idf=True)
#POS Tagging
tagged_sentences = nltk.corpus.treebank.tagged_sents()
cutoff = int(.75 * len(tagged_sentences))
training_sentences = DataPrep.train_news['Statement']
print(training_sentences)
#training POS tagger based on words
def features(sentence, index):
""" sentence: [w1, w2, ...], index: the index of the word """
return {
'word': sentence[index],
'is_first': index == 0,
'is_last': index == len(sentence) - 1,
'is_capitalized': sentence[index][0].upper() == sentence[index][0],
'is_all_caps': sentence[index].upper() == sentence[index],
'is_all_lower': sentence[index].lower() == sentence[index],
'prefix-1': sentence[index][0],
'prefix-2': sentence[index][:2],
'prefix-3': sentence[index][:3],
'suffix-1': sentence[index][-1],
'suffix-2': sentence[index][-2:],
'suffix-3': sentence[index][-3:],
'prev_word': '' if index == 0 else sentence[index - 1],
'next_word': '' if index == len(sentence) - 1 else sentence[index + 1],
'has_hyphen': '-' in sentence[index],
'is_numeric': sentence[index].isdigit(),
'capitals_inside': sentence[index][1:].lower() != sentence[index][1:]
}
#helper function to strip tags from tagged corpus
def untag(tagged_sentence):
return [w for w, t in tagged_sentence]
#Using Word2Vec
with open("glove.6B.50d.txt", "rb") as lines:
w2v = {line.split()[0]: np.array(map(float, line.split()[1:]))
for line in lines}
#model = gensim.models.Word2Vec(X, size=100) # x be tokenized text
#w2v = dict(zip(model.wv.index2word, model.wv.syn0))
class MeanEmbeddingVectorizer(object):
def __init__(self, word2vec):
self.word2vec = word2vec
# if a text is empty we should return a vector of zeros
# with the same dimensionality as all the other vectors
self.dim = len(word2vec.itervalues().next())
def fit(self, X, y):
return self
def transform(self, X):
return np.array([
np.mean([self.word2vec[w] for w in words if w in self.word2vec]
or [np.zeros(self.dim)], axis=0)
for words in X
])
class TfidfEmbeddingVectorizer(object):
def __init__(self, word2vec):
self.word2vec = word2vec
self.word2weight = None
self.dim = len(word2vec.itervalues().next())
def fit(self, X, y):
tfidf = TfidfVectorizer(analyzer=lambda x: x)
tfidf.fit(X)
# if a word was never seen - it must be at least as infrequent
# as any of the known words - so the default idf is the max of
# known idf's
max_idf = max(tfidf.idf_)
self.word2weight = defaultdict(
lambda: max_idf,
[(w, tfidf.idf_[i]) for w, i in tfidf.vocabulary_.items()])
return self
def transform(self, X):
return np.array([
np.mean([self.word2vec[w] * self.word2weight[w]
for w in words if w in self.word2vec] or
[np.zeros(self.dim)], axis=0)
for words in X
])