-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperimenter_08.py
75 lines (59 loc) · 2.62 KB
/
experimenter_08.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from MDRMF.experimenter import Experimenter
from MDRMF.dataset import Dataset
import psutil
import time
import os
import threading
import socket
def generate_bar(usage, length=10):
"""Generate a simple text-based bar for the given usage percentage."""
bars = int((usage / 100.0) * length)
return '█' * bars + '-' * (length - bars)
def format_cpu_usage(cpu_percents, cols=4):
"""Format CPU usage into multiple columns."""
lines = []
rows = (len(cpu_percents) + cols - 1) // cols # Calculate the number of rows needed
for row in range(rows):
line = ""
for col in range(cols):
index = row + col * rows
if index < len(cpu_percents):
cpu_percent = cpu_percents[index]
bar = generate_bar(cpu_percent)
line += f"CPU {index:02}: {cpu_percent:5.1f}% {bar} "
lines.append(line)
return "\n".join(lines)
def monitor_resources():
# Get the current directory
current_dir = os.getcwd()
# Get the hostname to ensure the log file is unique to this node
hostname = socket.gethostname()
# Set the log file path in the current directory with the hostname included
log_file_path = os.path.join(current_dir, f"cpu_memory_usage_{hostname}.log")
# Continuously update the log file with current CPU and memory usage
with open(log_file_path, "w") as f:
while not stop_monitoring.is_set():
# Seek to the beginning of the file to overwrite it
f.seek(0)
cpu_percents = psutil.cpu_percent(interval=1, percpu=True)
# Format and display CPU usage in multiple columns
f.write("CPU Usage:\n")
f.write(format_cpu_usage(cpu_percents, cols=4))
# Display memory usage
memory_info = psutil.virtual_memory()
f.write(f"\n\nMemory Usage: {memory_info.percent:.1f}% used ({memory_info.used / (1024**3):.2f} GB out of {memory_info.total / (1024**3):.2f} GB)\n")
# Flush the file to ensure content is written out and truncate leftover content
f.flush()
f.truncate()
time.sleep(1)
# Create an event to signal when to stop monitoring
stop_monitoring = threading.Event()
# Start the monitoring thread
monitor_thread = threading.Thread(target=monitor_resources)
monitor_thread.start()
# Run the experiments
exp = Experimenter("experiment_setups/04-article/enrichmentOuter130k-pair/03_enrichment130k_MQN_RF_Greedy-pair-outer.yaml")
exp.conduct_all_experiments()
# Signal the monitoring thread to stop and wait for it to finish
stop_monitoring.set()
monitor_thread.join()